A Comparison of Spatial Interpolation Models for Mapping Rainfall Erosivity on China Mainland

Article Preview

Abstract:

Rainfall erosivity is an essential factor to reveal the response of water erosion to precipitation changes, and its spatial variation reveals erosion regional difference and water conservation regionalization. In this research, average annual rainfall erosivity in 1951 -2008 on China mainland is calculated through daily precipitation data from 711 meteorological stations. Precisions of 29 spatial interpolation models are quantitative compared including inverse distance weighting (IDW), radial basis function (RBF), kriging, cokriging (CK) and thin plate smoothing spline (TPS). Three variables cubic TPS is confirmed the optimum spatial interpolation model to rainfall erosivity on a large scale.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

4489-4495

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

Ā© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wenbo Zhang, Yun Xie, Baoyuan Liu: Journal of Mountain Science Vol.21 (2003), pp.32-40 (in Chinese).

Google Scholar

[2] Ke Jing, Wanzhong Wang, Fenli Zheng: Soil erosion and environment in China. (Science Press, China 2005) (in Chinese).

Google Scholar

[3] G. Dubois: Journal of Geographic Information and Decision Analysis Vol.2 (1998), pp.1-10.

Google Scholar

[4] A. Martinez-Cob: Journal of Hydrology Vol.174 (1996), pp.19-35.

Google Scholar

[5] E. Pardo-Igúzquiza: International Journal of Climatology Vol. 18(1998), pp.1031-1047.

Google Scholar

[6] P. Goovaerts: Journal of Hydrology Vol. 228 (2000), pp.113-129.

Google Scholar

[7] N. Diodato: International Journal of Climatology Vol.25 (2005), pp.351-363.

Google Scholar

[8] F.J. Moral: International Journal of Climatology Vol. 30(2010), pp.620-631.

Google Scholar

[9] W.A. Kieffer, P. Bois: Journal of Applied Meteorology Vol. 40(2001), pp.720-740.

Google Scholar

[10] J. Marquinez, J. Lastra, P. Garcia: Journal of Hydrology Vol. 270 (2003), pp.1-11.

Google Scholar

[11] P.C. Kyriakidis, N.L. Miller, J. Kim: Journal of Hydrology Vol. 297 (2004), pp.236-255.

Google Scholar

[12] M. Arora, P. Singh, N.K. Goel, R.D. Singh: Water Resources Management Vol.20 (2006), pp.489-508.

Google Scholar

[13] P. Oettli, P. Camberlin: Climate Research Vol.28 (2005), pp.199-212.

Google Scholar

[14] S.L. Hession, N. Moore: International Journal of Climatology, Vol.30 (2010), pp.968-985.

Google Scholar

[15] W. Luo, M.C. Taylor, S.R. Parker: International Journal of Climatology Vol.28 (2008), pp.947-959.

Google Scholar

[16] D.V. Manthena, A. Kadiyala, A. Kumar: Environmental Progress & Sustainable Energy Vol.28 (2009), pp.487-492.

Google Scholar

[17] H. Apaydin, A.S. Anli, F. Ozturk: International Journal of Climatology Vol.30 (2010), pp.1078-1094.

Google Scholar

[18] M. Chowdhury, A. Ali, H. Faisal: Stochastic Environmental Research & Risk Assessment Vol.24 (2010), pp.1-7.

Google Scholar

[19] R.R. Murphy, F.C. Curriero, W.P. Ball: ASCE Journal of Environmental Engineering Vol. 136(2010), pp.160-171.

Google Scholar

[20] M.F. Hutchinson: Anusplin Version 4.3 (The Australian National University, Australia 2004).

Google Scholar

[21] Zhihong Liu, Lintao Li, R.M. Tim, T.G. VanNiel, Qinke Yang, Rui Li:Meteorological Monthly Vol. 34(2008), pp.92-100 (in Chinese).

Google Scholar

[22] Wenbo Zhang, Jinsheng Fu: Resources Science Vol.25 (2003), pp.35-41(in Chinese).

Google Scholar

[23] C. Santhi, J.G. Arnold, J.R. Williams, L.M. Hauck, W.A. Dugas: Transactions of the American Society of Agricultural Engineers Vol. 44(2001), pp.1559-1570.

Google Scholar