Response of Reed Canary Grass to Salt Stress during Seed Germination and Vegetative Stage

Article Preview

Abstract:

The aim of this experiment was to determine the responses of reed canary grass (Phalaris arundinacea L.) to salt stress during germination and vegetative growth. Therefore, effects of salinity (0, 50, 100,150, 200,250mMNaCl) on germination, changes in the percentage of germination, abnormal seedling and un-germinated seeds of two germplasms (Zxy06p-2449 and Zxy06p-2653) during germination under stress were determined. Moreover, during vegetative growth(40d old plants), changes in superoxide dismutase(SOD), peroxidase(POD), catalase (CAT), electrolyte leakage were also investigated after salt treatment for 5,10 and 15d. Salt stress decreased the germination percentage. Few seeds germinated at 200mMNaCl, abnormal seedlings and un-germinated seeds increased significantly under the higher salt concentration. During vegetative growth, increased activities of SOD, in 50,100 and 150mMNaCl treated-plants may help to avoid oxidative damage. Differential responses of antioxidant enzymes to salt stress during germination and vegetative growth suggested different antioxidant metabolism in reed canary grass. From the results obtained in present study, it can be suggested that reed canary grass is a moderately salt-tolerant specie with considerable germplasm differences. Zxy06p-2449 and Zxy06p-2653 will not be survive in long-term (>15d) salt treatment under 150mMNaCl, especially Zxy06p-2653 which shown more sensitive under higher salt concentrations

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

5355-5362

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Sahramaa. Evaluating germplasm of reed canary grass,Phalaris arundinacea . University of Helsinki ,Helsinki, (2004),p.7

Google Scholar

[2] I.Lewandowski, J. Scurlock , E. Lindvall, M. Christou: Biomass and Bioenergy.Vol.25 ( 2003), pp.335-361.

DOI: 10.1016/s0961-9534(03)00030-8

Google Scholar

[3] M. Finell, C Nilsson: Industrial Crops and Products. Vol.22 (2005),pp.157-167.

Google Scholar

[4] P.Borjesson: Biomass and Bioenergy . Vol .16 (1999) 155-170.

Google Scholar

[5] K, Pahkala, M, Isolahti , A. Partala, A. Suokannas, A. Kirkkari M. Peltonen,: Ruokohelven viljely ja korjuu energian tuotantoa varten, 2. Korjattu painos [The cultivation and harvest of reed canary grass for energy production, 2nd corrected edition]. Jokioinen, Finland: MTT: Maa- jaelintarviketalous 1; 2005.

Google Scholar

[6] S. Landstrom, L. Lomakka, S. Anderson: Biomass Bioenergy .Vol.11(4).pp.333-341,(1996)

Google Scholar

[7] M. Sahramaa, L. Jauhiainen: Ind Crops Prod .Vol . 18(2003),pp.155-169.

Google Scholar

[8] G.Q.A Anderson, M. Fergusson: Ibis Vol .148(2006),pp.180-183.

Google Scholar

[9] Tike. Utilized agricultural area in 2008 - forecast 10.6.2008.Helsinki, Finland: Information Centre of the Ministry of Agriculture and Forestry (Tike); 2008.

Google Scholar

[10] Information on http://www.mmm.fi/en/index/frontpage/rural_development/ Rural_development_programmes.html

Google Scholar

[11] A.A.A Latef: Cereal Res. Comm.Vol . 38(2010),pp.43-55.

Google Scholar

[12] M. Sheng ,M. Tang, H. Chan, B.W Yang: Mycorrhiza Vol .18(2008),pp.287-296.

Google Scholar

[13] W.W Nie ,Y.L Zhang, X.Z Ren: Journal of Inner Mongolia University for Nationalities. Vol . 25(2).(2010),pp.175-177

Google Scholar

[14] I. Fridovich, C. Beauchamp: Anal. Biochem. Vol . 44 (1971),pp.276-287.

Google Scholar

[15] M.Chance, A.Maehly: Methods Enzymol. Vol .2(1955),pp.764-775.

Google Scholar

[16] M. Dionisiosese, S. Tobita: Plant Sci. Vol .135(1998),pp.1-9.

Google Scholar

[17] M. Ashraf, M. Foolad: Adv. Agron. Vol .88(2005),pp.223-271.

Google Scholar

[18] J. Li, L.Y. Yin, M.A Jongsma, C.Y Wang: Industrial Crops and Products , Vol . 34 (2011),pp.1543-1549

Google Scholar

[19] Bybordi, A: Not. Bot. Hortic. Agrobo. Vol . 38(2010),pp.128-133.

Google Scholar

[20] C. Patanè, V. Cavallaro, S. Cosentino : Ind. Crop Prod. Vol . 30 (2009),pp.1-8.

Google Scholar

[21] C. Bowler, T. V. Montagu, D. Inze: Annu. Rev. Plant Physiol. Plant Mol. Biol. Vol. 43(1992) ,pp:83-116.

DOI: 10.1146/annurev.pp.43.060192.000503

Google Scholar

[22] M. Bor, F. Ozdemir, I. Turkan:Plant Sci. Vol . 164 (2003),pp.77-84.

Google Scholar

[23] T. Demiral, I. Turkan,:Environ. Exp. Bot. Vol . 53 (2005),pp.247-257.

Google Scholar

[24] R. Munns, M. Tester:Annu. Rev. Plant Biol. Vol .59 (2008) 651-681.

Google Scholar

[25] U. Pérez-López, A. Robredo, M. Lacuesta, C. Sgherri, A. Muñoz-Rueda,F. Navari-Izzo, A. Mena-Petite:Physiol. Plantarum . Vol .135 (2009),pp.29-42.

DOI: 10.1111/j.1399-3054.2008.01174.x

Google Scholar

[26] R. Yin, T.H Bai, F.W Ma: Scientia Horticulturae. Vol .126 (2010),pp.247-252.

Google Scholar

[27] F. Cavalcanti, J. Oliveira, A.Martins-Miranda, R.Viégas, J. Albenísio,G. Silveira: New Phytol. Vol .163 (2004),pp.563-571.

Google Scholar

[28] M. Tal, M. Shannon: Z. Pflanzenphysiol. Vol . 112 (1983),pp: 411-415.

Google Scholar

[29] H. Borochov-Neori, A. Borochov: J. Plant Physiol. Vol . 139 (1991),pp.100-105.

Google Scholar