[1]
Wu F.B., Dong J., Chen F. & Zhang G.P. 2005. Response of cadmium uptake in different barley genotypes to cadmium level. J. Plant Nutr. 28: 2201–2209.
DOI: 10.1080/01904160500324741
Google Scholar
[2]
Lima A.I.G., Pereira S.I.A., de Almeida Paula Figueira E.M., Caldeira G.C.N. & de Matos Caldeira H.D.Q. 2006. Cadmium detoxification in roots of Pisumsativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ. Exp. Bot. 55: 149–162.
DOI: 10.1016/j.envexpbot.2004.10.008
Google Scholar
[3]
Jones D.L., Edwards A.C., Donachie K. & Darrah P.R. 1994. Role of preteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant Soil 158: 183-192.
DOI: 10.1007/bf00009493
Google Scholar
[4]
Lasat M.M. 2002. Phytoextraction of toxic metals: a review of biological mechanisms. Environ. Qual. 31: 109-120.
DOI: 10.2134/jeq2002.1090
Google Scholar
[5]
Jones D.L., Darrah P.R. & Kochian L.V. 1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180: 57-66.
DOI: 10.1007/bf00015411
Google Scholar
[6]
Mench M. & Martin E. 1991. Mobilization of cadmium and othermetals from two soils by root exudates of Zea mays L., Nicotiana tabacum L., and Nicotiana rustica L. Plant Soil 132: 187-196.
DOI: 10.1007/bf00010399
Google Scholar
[7]
Krishnamurti G.S.R., Cieśliński G., Huang P.M. & Van Rees K.C.J. 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. Environ. Qual. 26: 271-277.
DOI: 10.2134/jeq1997.00472425002600010038x
Google Scholar
[8]
Li Y.H., Huang B.X. & Shan X.Q. 2003. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis. Anal. Bioanal. Chem. 375: 775-780.
DOI: 10.1007/s00216-003-1789-1
Google Scholar
[9]
Wang M., Qu F., Shan X.Q. & Lin J.M. 2003. Development and optimization of a method for the analysis of low-molecular-mass organic acids in plants by capillary electrophoresis with indirect UV detection. J. Chromatogr. A 989: 285-292.
DOI: 10.1016/s0021-9673(03)00026-8
Google Scholar
[10]
Hoagland D.R. & Arnon D.I. 1938. The water-culture method for growing plants without soil. Calif. Agric.Exp. Stn. Bull. 347: 36-39.
Google Scholar
[11]
Bao T.,Sun L.N., & Sun T.H. 2011. The effects of Fe deficiency on low molecular weight organic acid exudation and cadmium uptake by Solanum nigrum L.. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 61:4, 305-312
DOI: 10.1080/09064710.2010.493529
Google Scholar
[12]
Pinton R., Varanini Z. & Nannipieri P. 2001. The Rhizosphere: Biochemistry and Organic Substances at the Soil-plant Interface. Marcel Dekker, Inc. USA. 424 pp.
DOI: 10.1006/anbo.2001.1455
Google Scholar
[13]
Shan X.Q., Wang Z., and Zhang S., 2004. Effect of low molecular weight organic acids on uptake of lanthanum by wheat roots. Plant Soil, 261 (1-2), 163-170.
DOI: 10.1023/b:plso.0000035563.71887.15
Google Scholar
[14]
Hinsinger H. 1998. How do plant roots acquire mineral nutrients? Chemical process involved in the Rhizosphere. Adv. Agron. 64: 225-265.
DOI: 10.1016/s0065-2113(08)60506-4
Google Scholar
[15]
Martell A.E., Smith R.M., 1989. Critical stability constants. Plenum Press,NewYork. Figure 1. Cd accumulation in wheats. Figure 2. Effect of Cadmium on the exudation of malic acid, tartaric acid, citric acid and acetic acid by wheat root.
Google Scholar