Impact of Continuous Cucumis sativus L. Cropping on the Incidence of Root Diseases and Bacterial Community Structure

Article Preview

Abstract:

To investigate the change of cucumber root disease incidence and bacterial community shift in monocultrue soil, we established 4 treatments of greenhouse-pot cucumber, each representing various monoculture times, and monitored the bacterial variation in rhizosphere/bulk soil and root disease index. Results showed that culturable bacteria numbers gradually decreased as monoculture continued, a significant (P<0.05) difference was observed in rhizosphere samples of the fourth cropping (FC) and the third cropping (TC) soil in contrast to that of non-continuous cropping (NC). The Eco-Physiological diversity index also declined with consecutive cucumber cropping. Analysis by denaturing gradient gel electrophoresis (DGGE) showed that a few dominant bacterial species, including Pseudomonas sp. (95% similarity), Bacteriovorax sp. (93% similarity) and 2 uncultured soil bacteria, declined in population, while Sphingomonas sp. (100% similarity) and one uncultured bacterium increased. For all samples analyzed using DGGE or culture dependent approach, the bacterial population shift was more sensitive in the rhizosphere than in bulk soils, less bacterial diversity and higher root disease incidences were both detected in continuous monocultured soils.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

5472-5479

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Krupinsky, K.L. Bailey, M.P. McMullen, B.D. Gossen and T.K. Turkington: Agron. J.,Vol.94(2002), pp.198-209.

Google Scholar

[2] X.C. Chang and N.G. Juma: Biol. Fertil. Soils., Vol.22(1996), pp.31-39.

Google Scholar

[3] G. J. van Os, J.P.M. Wijnker and W.J.M. van Gulik: Euro. J. Plant Path.,Vol105(1999), pp.791-800.

DOI: 10.1023/a:1008722517813

Google Scholar

[4] S. Lodha, S.K. Sharma and R.K. Aggarwal: Euro. J. Plant Path., Vol108(2002), pp.253-261.

Google Scholar

[5] J.Q. Yu, F.Y. Su, F.Z. Ming and W.H. Hu: Biochem. Syst. Ecol., Vol31(2003), pp.129-139.

Google Scholar

[6] M. Sène, C. Gallet and T. Doré: J. Chem. Ecol., Vol27(2001), pp.81-92.

Google Scholar

[7] M. Karpenstein-Machan and R. Stuelpnagel: Plant and soil, Vol218(2000), pp.215-232.

DOI: 10.1023/a:1014932004926

Google Scholar

[8] Z.Q. An, J.W. Hendrix , D.E. Hershman, R.S. Ferriss and G.T. Henson: Mycorrhiza. Vol3(1993), pp.171-182.

Google Scholar

[9] S. Alström: Biol. Fertil. Soils., Vol14(1992), pp.145-150.

Google Scholar

[10] L. Lebreton, P. Lucas, F. Dugas, A.Y. Guillerm, A. Schoeny and A. Sarniguet: Environ. Microb., Vol6(2004), pp.1174-1185.

DOI: 10.1111/j.1462-2920.2004.00637.x

Google Scholar

[11] Y. Shiomi, M. Nishiyama, T. Onizuka and T. Marumoto: Appl. Environ. Microb., Vol65(1999), pp.3996-4001.

Google Scholar

[12] J. D. van Elsas, P. Garbeva and J. Salles: Biodegradation. Vol13(2002), pp.29-40.

Google Scholar

[13] A. Rumberger, S.R. Yao, I.A. Merwin, E.B. Nelson and J.E. Thies: Plant and Soil., Vol264(2004), pp.247-260.

Google Scholar

[14] G.A. Kowalchuk, G.J. Os, J. Aartrijk and J.A. Veen: Biol. Fertil. Soils., Vol37(2003), pp.55-63.

Google Scholar

[15] W. de Boer, P. Verheggen, P.J.A.K. Gunnewiek, G.A. Kowalchuk and J.A. van Veen: Appl. Environ. Microb. Vol69(2003), pp.835-844.

DOI: 10.1128/aem.69.2.835-844.2003

Google Scholar

[16] S. Alvey, M. Bagayoko, G. Neumann and A. Buerkert: Plant and Soil, Vol231(2001), pp.45-54.

DOI: 10.1023/a:1010386800937

Google Scholar

[17] Y.S. Hu, K. Wu, N. Liu, H.G. Chen and X.C. Jia: Agri. Sci. Chin. Vol3(2004), pp.376-383.

Google Scholar

[18] Ö. Baysal, Y.Z. Gürsoy, H. Örnek and A. Duru: J. Gener. Plant Path., Vol71(2005), pp.204-210.

Google Scholar

[19] J. Zhou, M.A. Brune and J.M. Tiedje: Appl. Environ. Microb., Vol62(1996), pp.316-322.

Google Scholar

[20] G. Muyzer, E.C. de Waal and A.G. Uitterlinden: Appl. Environ. Microb., Vol59(1993), pp.695-700.

Google Scholar

[21] X.G. Lin, R. Yin and H.Y. Zhang: Environ. Geoch. Heal., Vol26(2004), pp.119-128.

Google Scholar

[22] N.Z. Lupwayi, W.A. Rice and G.W. Clayton: Soil Biol. Bioch., Vol30(1998), pp.1733-1741.

Google Scholar

[23] Z.H. Cao, J. F.Huang, C.S. Zhang and A.F. Li: Environ. Geoch. Heal., Vol26(2004), pp.97-103.

Google Scholar

[24] F.K. Salako: J. Sust. Agri., Vol22(2003), pp.133-147.

Google Scholar

[25] B.K. Duffy, B.H. Ownley and D.M. Weller: Phytopathology, Vol88(1997), pp.1118-1124.

Google Scholar

[26] B.H. Ownley, B.K. Duffy and D.M. Weller: Appl. Environ. Microb., Vol69(2003), pp.3333-3343.

Google Scholar

[27] M. Mazzola, D.L. Funnell and J.M. Raaijmakers: Microb. Ecol., Vol48(2004), pp.338-348.

Google Scholar

[28] J.A. Parham, S.P. Deng, H.N. Da, H.Y. Sun and W.R. Raun: Biol. Fertil. Soil., Vol38(2003), pp.209-215.

Google Scholar

[29] C.H. Yang and D. E.Crowley: Appl. Environ. Microb., Vol66(2000), pp.345-351.

Google Scholar

[30] K.K. Pal, K.V. Tilak, A.K. Saxena, R. Dey and C.S. Singh: Microb. Res. Vol155(2000), pp.233-242.

Google Scholar

[31] B.B.M. Gardener and D.M. Weller: Appl. Environ. Microb., Vol67(2001), pp.4414-4425.

Google Scholar

[32] S. P. Story, E.L. Kline, T.A. Hughes, M.B. Riley and S.S. Hayasaka: Arch. Environ. Conta. Toxic., Vol47 (2004), pp.168-176.

Google Scholar

[33] R. Buonaurio, V. M. Stravato and Y. Kosako: Inter. J. Syst. Evol. Microb.,Vol52(2002), pp.2081-2087.

Google Scholar

[34] P.S. Ji and M. Wilson: Appl. Environ. Microb., Vol68(2002), pp.4383-4389.

Google Scholar