LAI Retrieval Based on PROSPECT-SAILH Model from Multi-Angular Data of WiDAS Imaging System

Article Preview

Abstract:

The aim of this study is to assess the capability of estimating Leaf Area Index (LAI) from high spatial resolution multi-angular Vis-NIR remote sensing data of WiDAS (Wide-Angle Infrared Dual-mode Line/Area Array Scanner) imaging system by inverting the coupled radiative transfer models PROSPECT-SAILH. Based on simulations from SAILH canopy reflectance model and PROSPECT leaf optical properties model, a Look-up Table (LUT) which describes the relationship between multi-angular canopy reflectance and LAI has been produced. Then the LAI can be retrieved from LUT by directly matching canopy reflectance of six view directions and four spectral bands with LAI. The inversion results are validated by field data, and by comparing the retrieval results of single-angular remote sensing data with multi-angular remote sensing data, we can found that the view angle takes the obvious impact on the LAI retrieval of single-angular data and that high accurate LAI can be obtained from the high resolution multi-angular remote sensing technology.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

5697-5703

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen, J.M. and T.A. Black, Defining Leaf-Area Index for Non-Flat Leaves. Plant Cell and Environment, 1992. 15(4): pp.421-429.

DOI: 10.1111/j.1365-3040.1992.tb00992.x

Google Scholar

[2] Aber, J.D. and C.A. Federer, A Generalized, Lumped-Parameter Model of Photosynthesis, Evapotranspiration and Net Primary Production in Temperate and Boreal Forest Ecosystems. Oecologia, 1992. 92(4): pp.463-474.

DOI: 10.1007/bf00317837

Google Scholar

[3] Bonan, G.B., Importance of Leaf-Area Index and Forest Type When Estimating Photosynthesis in Boreal Forests. Remote Sensing of Environment, 1993. 43(3): pp.303-314.

DOI: 10.1016/0034-4257(93)90072-6

Google Scholar

[4] Granier, A. and N. Breda, Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales Des Sciences Forestieres, 1996. 53(2-3): pp.537-546.

DOI: 10.1051/forest:19960233

Google Scholar

[5] Curran, P.J., Multispectral Remote-Sensing for the Estimation of Green Leaf-Area Index. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1983. 309(1508): pp.257-270.

DOI: 10.1098/rsta.1983.0039

Google Scholar

[6] Lee, K.S., et al., Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004. 91(3-4): pp.508-520.

DOI: 10.1016/j.rse.2004.04.010

Google Scholar

[7] Tian, Y.H., et al., Multiscale analysis and validation of the MODIS LAI product - I. Uncertainty assessment. Remote Sensing of Environment, 2002. 83(3): pp.414-430.

DOI: 10.1016/s0034-4257(02)00047-0

Google Scholar

[8] Baret, F. and S. Buis, Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems. Advances in Land Remote Sensing: System, Modeling, Inversion and Application, 2008: pp.173-201.

DOI: 10.1007/978-1-4020-6450-0_7

Google Scholar

[9] Chen, J.M., et al., Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment, 2003. 84(4): pp.516-525.

DOI: 10.1016/s0034-4257(02)00150-5

Google Scholar

[10] Widlowski, J.L., et al., Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies. Climatic Change, 2004. 67(2-3): pp.403-415.

DOI: 10.1007/s10584-004-3566-3

Google Scholar

[11] Pinty, B., et al., Uniqueness of multiangular measurements - Part I: An indicator of subpixel surface heterogeneity from MISR. Ieee Transactions on Geoscience and Remote Sensing, 2002. 40(7): pp.1560-1573.

DOI: 10.1109/tgrs.2002.801148

Google Scholar

[12] Verhoef, W., Light-Scattering by Leaf Layers with Application to Canopy Reflectance Modeling - the Sail Model. Remote Sensing of Environment, 1984. 16(2): pp.125-141.

DOI: 10.1016/0034-4257(84)90057-9

Google Scholar

[13] Verhoef, W., Earth Observation Modeling Based on Layer Scattering Matrices. Remote Sensing of Environment, 1985. 17(2): pp.165-178.

DOI: 10.1016/0034-4257(85)90072-0

Google Scholar

[14] Major, D.J., et al., Accuracy and Sensitivity Analyses of Sail Model-Predicted Reflectance of Maize. Remote Sensing of Environment, 1992. 41(1): pp.61-70.

DOI: 10.1016/0034-4257(92)90061-n

Google Scholar

[15] Baret, F., et al., Modeled Analysis of the Biophysical Nature of Spectral Shifts and Comparison with Information-Content of Broad Bands. Remote Sensing of Environment, 1992. 41(2-3): pp.133-142.

DOI: 10.1016/0034-4257(92)90073-s

Google Scholar

[16] Jacquemoud, S., et al., PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 2009. 113: p. S56-S66.

DOI: 10.1016/j.rse.2008.01.026

Google Scholar

[17] Li, X., et al., Watershed Allied Telemetry Experimental Research. Journal of Geophysical Research-Atmospheres, 2009. 114: p. D22103.

Google Scholar

[18] B. Hosgood, S.J., G. Andreoli, J. Verdebout, A. Pedrini, G. Schmuck Leaf Optical Properties EXperiment 93 (LOPEX93). . 1995, European Commission,Joint Research Centre,Institute for Remote Sensing Applications.

Google Scholar

[19] Combal, B., et al., Retrieval of canopy biophysical variables from bidirectional reflectance - Using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment, 2003. 84(1): pp.1-15.

DOI: 10.1016/s0034-4257(02)00035-4

Google Scholar

[20] Jacquemoud, S. and F. Baret, Prospect - a Model of Leaf Optical-Properties Spectra. Remote Sensing of Environment, 1990. 34(2): pp.75-91.

DOI: 10.1016/0034-4257(90)90100-z

Google Scholar

[21] Kuusk, A., The hot spot effect in plant canopy reflectance.R.B. Myneni, J. Ross(Eds.) (Toim.). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology(139 - 159). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology, ed. J.R.E.T. R.B. Myneni. 1991, Berlin: Springer Verlag.

DOI: 10.1007/978-3-642-75389-3

Google Scholar