[1]
Chen, J.M. and T.A. Black, Defining Leaf-Area Index for Non-Flat Leaves. Plant Cell and Environment, 1992. 15(4): pp.421-429.
DOI: 10.1111/j.1365-3040.1992.tb00992.x
Google Scholar
[2]
Aber, J.D. and C.A. Federer, A Generalized, Lumped-Parameter Model of Photosynthesis, Evapotranspiration and Net Primary Production in Temperate and Boreal Forest Ecosystems. Oecologia, 1992. 92(4): pp.463-474.
DOI: 10.1007/bf00317837
Google Scholar
[3]
Bonan, G.B., Importance of Leaf-Area Index and Forest Type When Estimating Photosynthesis in Boreal Forests. Remote Sensing of Environment, 1993. 43(3): pp.303-314.
DOI: 10.1016/0034-4257(93)90072-6
Google Scholar
[4]
Granier, A. and N. Breda, Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales Des Sciences Forestieres, 1996. 53(2-3): pp.537-546.
DOI: 10.1051/forest:19960233
Google Scholar
[5]
Curran, P.J., Multispectral Remote-Sensing for the Estimation of Green Leaf-Area Index. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1983. 309(1508): pp.257-270.
DOI: 10.1098/rsta.1983.0039
Google Scholar
[6]
Lee, K.S., et al., Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004. 91(3-4): pp.508-520.
DOI: 10.1016/j.rse.2004.04.010
Google Scholar
[7]
Tian, Y.H., et al., Multiscale analysis and validation of the MODIS LAI product - I. Uncertainty assessment. Remote Sensing of Environment, 2002. 83(3): pp.414-430.
DOI: 10.1016/s0034-4257(02)00047-0
Google Scholar
[8]
Baret, F. and S. Buis, Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems. Advances in Land Remote Sensing: System, Modeling, Inversion and Application, 2008: pp.173-201.
DOI: 10.1007/978-1-4020-6450-0_7
Google Scholar
[9]
Chen, J.M., et al., Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment, 2003. 84(4): pp.516-525.
DOI: 10.1016/s0034-4257(02)00150-5
Google Scholar
[10]
Widlowski, J.L., et al., Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies. Climatic Change, 2004. 67(2-3): pp.403-415.
DOI: 10.1007/s10584-004-3566-3
Google Scholar
[11]
Pinty, B., et al., Uniqueness of multiangular measurements - Part I: An indicator of subpixel surface heterogeneity from MISR. Ieee Transactions on Geoscience and Remote Sensing, 2002. 40(7): pp.1560-1573.
DOI: 10.1109/tgrs.2002.801148
Google Scholar
[12]
Verhoef, W., Light-Scattering by Leaf Layers with Application to Canopy Reflectance Modeling - the Sail Model. Remote Sensing of Environment, 1984. 16(2): pp.125-141.
DOI: 10.1016/0034-4257(84)90057-9
Google Scholar
[13]
Verhoef, W., Earth Observation Modeling Based on Layer Scattering Matrices. Remote Sensing of Environment, 1985. 17(2): pp.165-178.
DOI: 10.1016/0034-4257(85)90072-0
Google Scholar
[14]
Major, D.J., et al., Accuracy and Sensitivity Analyses of Sail Model-Predicted Reflectance of Maize. Remote Sensing of Environment, 1992. 41(1): pp.61-70.
DOI: 10.1016/0034-4257(92)90061-n
Google Scholar
[15]
Baret, F., et al., Modeled Analysis of the Biophysical Nature of Spectral Shifts and Comparison with Information-Content of Broad Bands. Remote Sensing of Environment, 1992. 41(2-3): pp.133-142.
DOI: 10.1016/0034-4257(92)90073-s
Google Scholar
[16]
Jacquemoud, S., et al., PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 2009. 113: p. S56-S66.
DOI: 10.1016/j.rse.2008.01.026
Google Scholar
[17]
Li, X., et al., Watershed Allied Telemetry Experimental Research. Journal of Geophysical Research-Atmospheres, 2009. 114: p. D22103.
Google Scholar
[18]
B. Hosgood, S.J., G. Andreoli, J. Verdebout, A. Pedrini, G. Schmuck Leaf Optical Properties EXperiment 93 (LOPEX93). . 1995, European Commission,Joint Research Centre,Institute for Remote Sensing Applications.
Google Scholar
[19]
Combal, B., et al., Retrieval of canopy biophysical variables from bidirectional reflectance - Using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment, 2003. 84(1): pp.1-15.
DOI: 10.1016/s0034-4257(02)00035-4
Google Scholar
[20]
Jacquemoud, S. and F. Baret, Prospect - a Model of Leaf Optical-Properties Spectra. Remote Sensing of Environment, 1990. 34(2): pp.75-91.
DOI: 10.1016/0034-4257(90)90100-z
Google Scholar
[21]
Kuusk, A., The hot spot effect in plant canopy reflectance.R.B. Myneni, J. Ross(Eds.) (Toim.). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology(139 - 159). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology, ed. J.R.E.T. R.B. Myneni. 1991, Berlin: Springer Verlag.
DOI: 10.1007/978-3-642-75389-3
Google Scholar