Constructing TiO2/Gr with Rapid Electrons Transfer for Efficiency Photocatalysis

Article Preview

Abstract:

TiO2/Gr powders were fabricated by hydrothermal method. Their micro-structure was characterized by transmission electron microscopy (TEM). The results revealed TiO2 particles anchored on the Gr sheets. DRS analysis indicated there was an obvious red shift of the absorption edge of TiO2/Gr compared to that of TiO2. The experiment of photocatalytic degradation of Rhodamine B (RhB) showed that the degradation rate with TiO2/Gr was 2.40 times as much as that with TiO2. The enhanced photocatalytic performance was firstly attribSubscript textuted to the rapid transfer of the photogenerated electrons from TiO2 to Gr, which could increase the charge carrier separation, limit their recombination, and enhance the photocatalytic efficiency. Furthermore, the extended light absorption range may also contribute to the enhanced photocatalytic performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

705-708

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Rome´as, P. Pichat, C. Guillard, T. Chopin, C. T. Lehaut: Ind. Eng. Chem. Res. Vol. 38 (1999), p.3878.

Google Scholar

[2] K. Nomiyama, T. Tanizaki, H. Ishibashi, K. Arizono, R. Shinohara, Environ. Sci. Technol. Vol. 39 (2005), p.8762.

Google Scholar

[3] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

Google Scholar

[4] A. Mills, S. L. Hunte: J. Photochem. Photobio A Vol. 108 (1997), p.1.

Google Scholar

[5] H. Chen, S. Chen, X. Quan, H. T. Yu, H. M. Zhao, Y. B. Zhang: J. Phys. Chem. C Vol. 112 (2008), p.9285.

Google Scholar

[6] K. T. Ranjit, I. Willner, S. Bossmann, A. Braun: J. Phys. Chem. B Vol. 102 (1998), p.9397.

Google Scholar

[7] X. Z. Fu, W. A. Zeltner, M. A. Anderson: Appl. Catal. B: Environ. Vol. 6 (1995), p.209.

Google Scholar

[8] H. Hidaka, K. Ajisaka, S. Horikoshi, T. Oyamab, K. Takeuchi, J. Zhao, N. Serpone: J. Photochem. Photobio. A Vol. 138 (2001), p.185.

Google Scholar

[9] S. G. Hickey, D. J. Riley: J. Phys. Chem. B Vol. 103 (1999), p.4599.

Google Scholar

[10] M. V. B. Zanoni, J. J. Sene, M. A. Anderson: J. Photochem. Photobio. A Vol. 157 (2003), p.55.

Google Scholar

[11] C. Santato, M. Ulmann, J. Augustynski: J. Phys. Chem. B Vol. 105 (2001), p.936.

Google Scholar

[12] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari: Nature Photon. Vol. 4 (2010), p.611.

Google Scholar

[13] H. Wang, H. S.Casalongue, Y. Liang, H. Dai: J. Am. Chem. Soc. Vol. 132 (2010), p.7472.

Google Scholar

[14] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang: Small Vol. 6 (2010), p.307.

Google Scholar

[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, Science Vol. 306 (2004), p.666.

Google Scholar

[16] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong: Nature Vol. 457 (2009), p.706.

Google Scholar

[17] J. W. Tang, Z. G. Zou, J. H. Ye, Angew. Chem. Int. Ed. Vol. 43 (2004), p.4463.

Google Scholar