[1]
Lehmann J,Gaunt J,Rondon M. Biochar sequestration in terrestrial ecosystems:A review[J]. Mitig Adapt Strat Global Change,2006 (11):403 -427.
DOI: 10.1007/s11027-005-9006-5
Google Scholar
[2]
Demirbas A. Effects of temperature and particle size on bio - char yield from pyrolysis of agricultural residues[J]. Anal Appl Pyrol,2004,72:243 - 248.
DOI: 10.1016/j.jaap.2004.07.003
Google Scholar
[3]
Kramer R W,Kujawinski E B,Hatcher P G. Identification of blackcarbon derived structures in a volcanic ash soil humicacid by Fourier transformion cyclotron resonance mass spectrometry[J]. Environ Sci Technol,2004,38(12):3387 - 3395.
DOI: 10.1021/es030124m
Google Scholar
[4]
Gerard Cornelissen,Zofia Kukulska,Stavros Kalaitzidis. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J].Environ Sci Technol,2004,38(13):3632- 3640.
DOI: 10.1021/es0498742
Google Scholar
[5]
Washington J Braida,Joseph J Pignatello. Sorption hystersis of benzene in charcoal particles [J].Environ Sci Technol,2003,37(2):409 - 417.
Google Scholar
[6]
Sombroek W. Amazon soils: A reconnaissance of the soils of the Brazilian Amazon region[R].Wageningen: Center for Agricultural Publications and Documentation,1966.
Google Scholar
[7]
David A. Laird,Pierce Fleming,Dedrick D.Davis. Impact of biochar amendment on the quality of a typical Midwestern agricultural soil. Journal homepage:www.elseviser.com/locate/geoderma
Google Scholar
[8]
X.Peng L.L.Ye,C.H. Wang,H.Zhou,B.Sun. Temperature- and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in southern China. Journal homepage:www.elseviser.com/locate/till
DOI: 10.1016/j.still.2011.01.002
Google Scholar
[9]
Jinyang Wang.Man Zhang .Zhenqing Xiong.Pingli Liu.Genxing Pan. Soil & Tillage Research 112(2011)159-166.
Google Scholar
[10]
Goldberg E D. Black Carbon in the Environment:Properties and Distribution[M]. New York: John Wiley Press,1985.
Google Scholar
[11]
Dongsheng Zhang, Zehui Jiang, Haiqing Ren, Xiaohong Chen. Mico-structure performance of bamboo biochar [J] Bamboo Reaearch Publication. 2006, 25 (4): 1-8.
Google Scholar
[12]
NSW Government. Biochar: what are the prospects? [EB/OL]. Http://www.dpi.nsw.gov.au/_data/assets/pdf_file/0017/302264/I-and-I-NSW-Biochar. pdf.
Google Scholar
[13]
Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J].Transactions of American Society of Agricultural and Biological Engineers,2008, 51(6):2061-2069.
DOI: 10.13031/2013.25409
Google Scholar
[14]
Antal M J, Gronli M. The art, science, and technology of charcoal production[J].Industrial & Engineering Chemistr Research,2003,42(8):1619-1640.
Google Scholar
[15]
Gheorghe C, Marculescu C, Badea A, et al. Effect of pyrolysis conditions on bio-char production from biomass[C]. Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Sources. University of La Laguna, Tenerife, Canary Islands Spain,2009:239-241.
Google Scholar
[16]
Laird D A, Brown R C, Amonette J E, et al. Review of the pyrolysis platform for coproducing biooil and biochar[J]. Biofuels, Bioproducts & Biorefining,2009,3:547-562.
DOI: 10.1002/bbb.169
Google Scholar
[17]
Granatstein D, Kruger C, Garcia-Perez M, et al. Biochar and pyrolysis: renewable soil carbon and energy[J].Sustaining the Pacific Northwest, Food, Farm, & Natural Resource Systems,2009,7(4):1-4.
Google Scholar
[18]
Zwieten L Van, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J].Plant and Soil,2010,327:235-246.
DOI: 10.1007/s11104-009-0050-x
Google Scholar
[19]
KWON S, PIGNATELLO J J. Effects of natural organic substances on the surface and adsorptive properties of environmental black carbon(char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents[J]. Environmental Science and Technology, 2005, 39: 7932-7939.
DOI: 10.1021/es050976h
Google Scholar
[20]
PIGNATELLO J J, KWON S, LU Y. Effects of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and free humic acids[J].Environmental Science and Technology, 2006, 40: 7757-7763.
DOI: 10.1021/es061307m
Google Scholar
[21]
ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337: 1-18.
DOI: 10.1007/s11104-010-0464-5
Google Scholar
[22]
YIP K V, TIAN F J, HAYASHI J, et al. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy and Fuels, 2010, 24: 173-181.
DOI: 10.1021/ef900534n
Google Scholar
[23]
LAIRD D A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon,while improving soil and water quality[J]. Agronomy Journal, 2008,100: 178-181.
DOI: 10.2134/agrojnl2007.0161
Google Scholar
[24]
YUAN Jinhua, XU Renkou. Effects of rice hull based biochar regulating acidity of red soil and yellow brown soil[J]. Journal of Ecology and Rural Environment, 2010, 26(5): 472-476.
Google Scholar
[25]
CHAN K Y, VAN ZWIETEN L, MESZAROS I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007, 45: 629-634.
DOI: 10.1071/sr07109
Google Scholar
[26]
NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174: 105-112. Attachment 1 Note; A Rice hull, B Rice hull biochar, C Peanut hull, D Peanut hull biochar, E Maize straw, F Maize straw biochar Attachment 2 Note; A Mushroom matrix, B Mushroom matrix biochar, C Rice straw, D Rice straw biochar, E Corn- cob, F Corncob biochar.
DOI: 10.7717/peerj.9267/table-2
Google Scholar