Effect of Temperatures on Tensile of Aluminium Thin Films

Article Preview

Abstract:

The mechanical process of single-crystal aluminium thin films under uniaxial tensile strain was simulated with molecular dynamics method at different temperature. The stress–strain curve and potential energy–strain curve of thin aluminium film under uniaxial tensile deformation were obtained by molecular dynamics simulations. With the changes of sample temperatures in uniaxial extension, the variation characteristics of stress–strain curves are alike at the elastic stage and different at the plastic one below and above 370 K, respectively. From the stress–strain curves, we gained the first local maximum stress-temperature curve and the strain at the first local maximum stress-temperature curve, and found that the strange temperature dependence of first local maximum stress: when the temperature is above 370 K, the stress goes down quickly with temperature, and when below 370 K, it descends slowly. With increasing temperature, the difference between two strain values corresponding to two maximal potential energies changes slowly below and above 370K but it goes up quickly about 370K. By these dependences, we have identified the critical temperature (370K) for the transition of plastic flow mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-139

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.S. Kang, P.S. Ho: Journal of Electronic Materials Vol. 26 (1997), p.805.

Google Scholar

[2] M. A. Haque, M. T. A. Saif: Scripta Materialia Vol. 47 (2002), p.863.

Google Scholar

[3] M. A. Haque, M. T. A. Saif: Thin Solid Films Vol. 484 (2005), p.364.

Google Scholar

[4] J. Rajagopalan, J. H. Han and M. T. A. Saif: Science Vol. 315 (2007), p.1831.

Google Scholar

[5] R. Komanduri, N. Chandrasekaran and L. M. Raff: Int. J. Mech. Sciences Vol. 43 (2001), p.2237.

Google Scholar

[6] L. Yuan, D. Shan and B. Guo: Journal of Materials Processing Technology Vol. 184 (2007), p.1.

Google Scholar

[7] Y. Mishin, D. Farkas, M. J. Mehl, et al: Phys. Rev. B Vol. 59 (1999), p.3393.

Google Scholar

[8] J.A. Zimmerman, H. Gao and F.F. Abraham: Modell. Simul. Mater. Sci. Eng. Vol. 8 (2000), p.103.

Google Scholar

[9] Y. Mishin, D. Farkas, M. J. Mehl, et al: Phys. Rev. B Vol. 63 (2001), p.224106.

Google Scholar

[10] J. Zimmer, Hartford, B. Von Sydow, et al: Phys. Rev. B Vol. 58 (1998), p.2487.

Google Scholar

[11] K. Kolluri, M. R. Gungor and D. Maroudas: Applied Physics Letters Vol. 94 (2009), p.101911.

Google Scholar

[12] M. Li, W. Y. Chu: Materials Science and Engineering A Vol. 363 (2003), p.234.

Google Scholar

[13] M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, Oxford 1987).

Google Scholar

[14] S. Melchionna, G. Ciccotti and B. L. Holian: Mol. Phys. Vol. 78 (1993), p.533.

Google Scholar

[15] Q. N. Guo, X. D. Yue, S. E. Yang, et al: Computational Materials Science. Vol. 50 (2010), p.319.

Google Scholar

[16] F. Wang and K. W. Xu : Journal of Materials Science Vol. 39 (2004), p.3089.

Google Scholar

[17] P. A. Gruber, S. Olliges, E. Arzt, et al: J. Mater. Res. Vol. 23 (2008), p.2406.

Google Scholar