Hydrothermal Synthesis of Phthalocyanine Sensitization TiO2 Nanowires

Article Preview

Abstract:

Phthalocyanine sensitization nano-TiO2 have been successfully synthesized by controlling TiO2's nuclear growth and CoPcTs adsorption simultaneously via a hydrothermal way by using TiO2, NaOH and CoPcTs as raw materials. XRD, BET, TG-DTA and FI-IR were used to characterize the features of the as-synthesized phthalocyanine sensitization TiO2 nanowires. The results showed that anatase nano- TiO2 with phthalocyanine sensitization have been prepared after heat treatment and cyanine materials are easily decomposed when the temperature above 450 °C; the specific surface area TiO2 and phthalocyanine sensitization nano-TiO2 is 42.2 m2/g and 110.5 m2/g, respectively. Methyl orange dyes were chosen to test the photocatalytic activities of the as-prepared sample in this experiment, and it found that the loading of 1% wt CoPcTs was the best.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

387-390

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] Amy L. Linsebigler, Guangquan. Lu, John T. Yates. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 95 (1995) 735–758.

DOI: 10.1021/cr00035a013

Google Scholar

[3] Wonyong Choi, Andreas Termin, Michael R. Hoffmann. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem., 98 (1994)13669–13679.

DOI: 10.1021/j100102a038

Google Scholar

[4] S Sakthivel, M. V Shankar, M Palanichamy, Banumathi Arabindoo, D. W Bahnemann, V Murugesan. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Research, 38(2004).

DOI: 10.1016/j.watres.2004.04.046

Google Scholar

[5] Dana Dvoranová, Vlasta Brezová, Milan Mazúr, Mounir A. Malati. Investigations of metal-doped titanium dioxide photocatalysts[J]. Appl Catal B-Environ, 37(2002)91–105.

DOI: 10.1016/s0926-3373(01)00335-6

Google Scholar

[6] K. Vinodgopal, Prashant V. Kamat. Enhanced rates of photocatalytic degradation of an Azo dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environ. Sci. Technol., 29 (1995) 841–845.

DOI: 10.1021/es00003a037

Google Scholar

[7] Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose, Thomas J. Latempa and Craig A. Grimes. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications[J]. Nano Lett., 8 (2008).

DOI: 10.1021/nl802096a

Google Scholar

[8] Nianqiang Wu, Jin Wang, De Nyago Tafen, Hong Wang, Jian-Guo Zheng, James P. Lewis, Xiaogang Liu, Stephen S. Leonard and Ayyakkannu Manivannan. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts[J]. J. Am. Chem. Soc., 132 (2010).

DOI: 10.1021/ja909456f

Google Scholar

[9] Jin Wang, De Nyago Tafen, James P. Lewis, Zhanglian Hong, Ayyakkannu Manivannan, Mingjia Zhi, Ming Li and Nianqiang Wu. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts[J]. J. Am. Chem. Soc., 131 (2009) 12290–12297.

DOI: 10.1021/ja903781h

Google Scholar