[1]
H. Dong, Y. Zhao, X. Yu, Effects of Sn Addition on Core Loss and Texture of Non-Oriented Electrical Steels, Journal of iron and steel research, international Vol. 16(6), pp.86-89, (2009).
DOI: 10.1016/s1006-706x(10)60033-7
Google Scholar
[2]
J. Wang, J. Li, X. Wang, Effect of Heating Rate on Microstructure Evolution and Magnetic Properties of Cold Rolled Non-Oriented Electrical Steel, Journal of iron and steel research, international Vol. 17(11), pp.54-61, (2010).
DOI: 10.1016/s1006-706x(10)60170-7
Google Scholar
[3]
E.J. Gutierrez-Castaneda, A. Salinas-Rodriguez, Effect of annealing prior to cold rolling on magnetic and mechanical properties of low carbon non-oriented electrical steels, Journal of Magnetism and Magnetic Materials Vol. 323, p.2524–2530, (2011).
DOI: 10.1016/j.jmmm.2011.05.039
Google Scholar
[4]
P. Ludwik, Elemente der technologischen Mechanik, Springer-Verlag OHG, Berlin, (1909).
Google Scholar
[5]
E. Voce, The Relationship Between Stress and Strain for Homogeneous Deformation, Journal of The Institute of Metals Vol. 74, p.537, (1948).
Google Scholar
[6]
W. Ramberg and W. R. Osgood, Description of Stress-strain Curves by three Parameters, NACA Technical Note No. 902, (1943).
Google Scholar
[7]
S. Ekelund, Analysis of Factors Influencing Rolling and Power Consumption in the Test Rolling of Steel, Steel Vol. 93, p.27, (1933).
Google Scholar
[8]
K. Inoue, The study of steel deformation resistance at elevated temperature, Steel and Iron Vol. 41(6), p.418, 1953. (In Japanese).
Google Scholar
[9]
Y. Misaka, The deformation resistence model of plain carbon steel at hot forming processing, Steel and Iron Vol. 52(10), pp.1584-87, 1966. (In Japanese).
Google Scholar
[10]
M. Shida, The empirical model of plain carbon steel, Plasticity and Deformation Vol. 10(153), p.610, 1969. (In Japanese).
Google Scholar
[11]
J. H. Zhou and K. Z. Guan, Deformation resistance of metal, Mechanical Industry Press, Beijing, pp.211-229, 1989. (In Chinese).
Google Scholar
[12]
C. M. Sellars and W. J. M. Tegart, On the mechanism of hot deformation, Mem. Scient. Revue Metall. Vol. 63 p.731, (1966).
Google Scholar
[13]
A. Cingara and H.J. McQueen, New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels, Journal of Materials Processing Technology Vol. 36(1), pp.31-42, (1992).
DOI: 10.1016/0924-0136(92)90236-l
Google Scholar
[14]
C. A. Hernandez, S. F. Medina and J. Ruiz, Modelling austenite flow curves in low alloy and microalloyed steels, Acta mater. Vol. 44(1), pp.155-163, (1996).
DOI: 10.1016/1359-6454(95)00153-4
Google Scholar
[15]
J. T. Liu, H. B. Chang, T.Y. Hsu, X. Y. Ruana, Prediction of the flow stress of high-speed steel during hot deformation using a BP artificial neural network, Journal of Materials Processing Technology Vol. 103 p.200–205, (2000).
DOI: 10.1016/s0924-0136(99)00444-6
Google Scholar
[16]
R. H. Wu, J. T. Liu, H. B. Chang, T. Y. Hsu, X. Y. Ruan, Prediction of the flow stress of 0. 4C–1. 9Cr–1. 5Mn–1. 0Ni–0. 2Mo steel during hot deformation, Journal of Materials Processing Technology Vol. 116, pp.211-218, (2001).
DOI: 10.1016/s0924-0136(01)01014-7
Google Scholar
[17]
M. P. Phaniraj, A. K. Lahiri, Constitutive equation for elevated temperature flow behavior of plain carbon steels using dimensional analysis, Journal of Materials Processing Technology Vol. 141, p.219–227, (2003).
DOI: 10.1016/j.matdes.2006.08.006
Google Scholar
[18]
S. H. M. Anijdan, H. R. M. Hosseini, A. Bahrami, Flow stress optimization for 304 stainless steel under cold and warm compression by artificial neural network and genetic algorithm, Materials and Design Vol. 28, p.609–615, (2007).
DOI: 10.1016/j.matdes.2005.07.018
Google Scholar
[19]
Y. F. Han, W. D. Zeng, Y. Q. Zhao, Y. L. Qi, Y. Sun, An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process, Computational Materials Science Vol. 50, p.2273–2279, (2011).
DOI: 10.1016/j.commatsci.2011.03.004
Google Scholar