Multi-Objects Detection in Remote Sensing Images Using Multiple Kernel Learning

Article Preview

Abstract:

The objective of this work is multiple objects detection in remote sensing images. Many classifiers have been proposed to detect military objects. In this paper, we demonstrate that linear combination of kernels can get a better classification precision than product of kernels. Starting with base kernels, we obtain different weights for each class through learning. Experiment on Caltech-101 dataset shows the learnt kernels yields superior classification results compared with single-kernel SVM. While such a powerful classifier act as a sliding-window detector to search planes in images collected from Google Earth, results shows the effectiveness of using MKL detector to locate military objects in remote sensing images.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 532-533)

Pages:

1258-1262

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Varma and D. Ray: Learning the discriminative power–invariance trade-off. In Proc. ICCV (2007).

Google Scholar

[2] Y. Freund, R. E. Shapire: Experiments with a new boosting algorithm. Proc. of the 13th Conf. on Machine Learning. pp.148-156 (1999).

Google Scholar

[3] Lanckriet, G. R. G., Cristianini, N., Ghaoui, L. E., Bartlett, P., & Jordan, M. I. : Learning the kernel matrix with semidefinite programming. J. Machine Learning Research, vol. 5, p.27–72 (2004).

Google Scholar

[4] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan: Multiple kernel learning, conic duality, and the SMO algorithm. In NIPS(2004).

DOI: 10.1145/1015330.1015424

Google Scholar

[5] S. Sonnenburg, G. Raetsch, C. Schaefer, and B. Schoelkopf: Large scale multiple kernel learning. JMLR, 7: p.1531–1565 (2006).

Google Scholar

[6] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet: More efficiency in multiple kernel learning. In ICML(2007).

DOI: 10.1145/1273496.1273594

Google Scholar

[7] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee: Choosing multiple parameters for Support Vector Machines. Machine Learning, vol. 46: p.131–159 (2002).

DOI: 10.1023/a:1012450327387

Google Scholar

[8] A . Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet: More efficiency in multiple kernel learning. In ICML(2007).

DOI: 10.1145/1273496.1273594

Google Scholar

[9] Alexander C. Berg, Tamra L. Berg, and Jitendra Malik: Shape Matching and Object Recognition using Low Distortion Correspondences, Computer Vision and Pattern Recognition, vol. 1: p.26 – 33(2005).

DOI: 10.1109/cvpr.2005.320

Google Scholar

[10] A. Bosch, A. Zisserman, and X. Munoz: Scene classification via pLSA. In Proc. ECCV (2006).

Google Scholar

[11] E. Shechtman and M. Irani: Matching local self-similarities across images and videos. In CVPR(2007).

DOI: 10.1109/cvpr.2007.383198

Google Scholar

[12] A. Bosch, A. Zisserman, and X. Munoz: Representing shape with a spatial pyramid kernel. In CIVR (2007).

Google Scholar

[13] L. Fei-Fei, R. Fergus, and P. Perona: One-shot learning of object categories. Transactions on Pattern Analysis and Machine Intelligence, vol. 28: p.594 – 611(2006).

DOI: 10.1109/tpami.2006.79

Google Scholar

[14] A. Bosch, A. Zisserman, and X. Munoz: Image classification using ROIs and Multiple Kernel Learning. In IJCV, pp.1-25 (2008).

Google Scholar