[1]
M. Lindenbaum, M. Fischer, and A. Bruckstein. On gabor contribution to image enhancement, Pattern Recognition, 1994, 27: 1–8.
DOI: 10.1016/0031-3203(94)90013-2
Google Scholar
[2]
P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion, IEEE Trans. Patt. Anal. Mach. Intell., 1990, 12: 629–639.
DOI: 10.1109/34.56205
Google Scholar
[3]
L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms, Physica D, 1992, 60: 259–268.
DOI: 10.1016/0167-2789(92)90242-f
Google Scholar
[4]
L. Yaroslavsky. Digital Picture Processing - An Introduction. Springer Verlag, (1985).
Google Scholar
[5]
M. P. Wand and M. C. Jones, Kernel Smoothing, ser. Monographs on Statistics and Applied Probability. New York: Chapman & Hall, (1995).
Google Scholar
[6]
Hiroyuki Takeda, Sina Farsiu and Peyman Milanfar. Kernel Regression for Image Processing and Reconstruction. IEEE transactions on image processing, 2007, VOL. 16, NO. 2, FEBRUARY.
DOI: 10.1109/tip.2006.888330
Google Scholar
[7]
Weinberger.K. and Tesauro.G. Metric Learning for Kernel Regression. Eleventh International Conference on Artificial Intelligence and Statistics, Omnipress, Puerto Rico, 2007, pp.608-615.
Google Scholar
[8]
Feng X andM ilan far P. Multiscale principal components analysis for image local orientation estimation, Presented at the 36th As ilom arCon. f Signals, System s and Com puters, Pacific Grove, CA, Nov. 2002. Fig. 4, Block diagram of the method Fig. 5 Improved Data-Adaptive Kernel Regression Method. (a) Original image. (b) Noisy image. (c) Smooth processed of image (b). (d) Gradient caculated of image (b). (e) Edge detection of image (c). (f) Kernel regression based on image (b), (d) and (e). Fig. 6 Comparison of denoising algorithm. (a) Original image. (b) Noisy image. (c) Mean filtering method. (d) median filtering method. (e) Data-adaptive kernel regression. (f) The proposed improved data-adaptive kernel regression. Fig. 2, Control the shape of the kernel.
DOI: 10.4028/www.scientific.net/amr.532-533.1359
Google Scholar