[1]
Walton, C. M, The Heavy Vehicle Electronic License Plate Program and Crescent Demonstration Project, IEEE Transactions on Vehicular Technology 40(1) (1991), p.147–151.
DOI: 10.1109/25.69982
Google Scholar
[2]
Caner, H., Gecim, H.S., Alkar, A.Z., Efficient Embedded Neural-Network-Based License Plate Recognition System, IEEE Transactions on Vehicular Technology 57(5) (2008), p.2675–2683.
DOI: 10.1109/tvt.2008.915524
Google Scholar
[3]
Lopez, J.M., Gonzalez, J., Galindo, C., Cabello, J.: A, versatile low-cost car plate recognition system, In: 9th Inl Symp. on Signal Processing and Its Applications ISSPA, p.1–4, (2007).
DOI: 10.1109/isspa.2007.4555412
Google Scholar
[4]
Comelli, P., Ferragina, P., Notturno Granieri, M., Stabile, F., Optical Recognition of Motor Vehicle License Plates, IEEE Transactions on Vehicular Technology 44(4) (1995), p.790–799.
DOI: 10.1109/25.467963
Google Scholar
[5]
M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int.J. Comput, p.321–331, (1987).
DOI: 10.1007/bf00133570
Google Scholar
[6]
T. F. Chan, L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10(2) (2001), p.266~277.
DOI: 10.1109/83.902291
Google Scholar
[7]
D. Mumford, J. Shah, Optimal approximation by piecewise smooth function and associated variational problems, Communication on Pure and Applied Mathematics 42 (1989) 577–685.
DOI: 10.1002/cpa.3160420503
Google Scholar
[8]
C. Li, C. Xu, A. W. Anderson, and J. C. Gore, MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework, IPAMI , (2009).
DOI: 10.1007/978-3-642-02498-6_24
Google Scholar
[9]
Z.J. Hou, A review on MR image intensity inhomogeneity correction, Int. J. Biomed. Imaging 2006, p.1–11, (2006).
Google Scholar
[10]
S. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, Journal of Computational Physics, 79 (1988), p.12–49.
DOI: 10.1016/0021-9991(88)90002-2
Google Scholar
[11]
C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, in: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, p.430–436, (2005).
DOI: 10.1109/cvpr.2005.213
Google Scholar