[1]
Yan Pingfan, Zhang Changshui. Artificial neural networks and simulation evolutionary computation. Beijing, Tsinghua University Press, (2005).
Google Scholar
[2]
Gary G. Yen, Haiming Lu. Hierarch genetic algorithm based neural network design. IEEE Symposium on Combination of Evolutionary Computation and Neural Networks, 168-175, (2000).
DOI: 10.1109/ecnn.2000.886232
Google Scholar
[3]
Jin Chaohong, Wu Hansong, Li Lamei. A neural networks training algorithm based on adaptive genetic algorithm. Control and Automation, 21(10): 49-51, (2005).
Google Scholar
[4]
Xu lu, Tu Chengyu. A new improved genetic algorithm and its property analysis. Acta Electronica Sinica, 29 (7): 902-904, (2001).
Google Scholar
[5]
Wei Gao. Study on new evolutionary neural network. Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, 1287-1292.
Google Scholar
[6]
Frank H. F. Leung, H. K. Lam, S. H. Ling et al. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans on Neural Networks, 14 (1): 79-81, (2003).
DOI: 10.1109/tnn.2002.804317
Google Scholar
[7]
G A Rovithakis, I Chalkiadakis, M E Zervakis. High-order neural network structure selection for function approximation applications using genetic algorithms. IEEE Trans Systems, Man and Cybernetics, 1: 153-159, (2003).
DOI: 10.1109/tsmcb.2003.811767
Google Scholar
[8]
Srinvas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm. IEEE Trans on Systems, Man and Cybernetics, 24 (4): 162-167, (1994).
DOI: 10.1109/21.286385
Google Scholar
[9]
Shiwei Yu, Kejun Zhu, Fengqin Diao. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction. Applied Mathematics and Computaion, 195: 66-75, (2008).
DOI: 10.1016/j.amc.2007.04.088
Google Scholar