[1]
H.L. Smith, P. Waltman, The Theory of the Chemosta, Cambridge Univ. Press. Cambridge, UK, (1995).
Google Scholar
[2]
W.H. So, P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput. Vol. 32, PP. 169-183, (1989).
DOI: 10.1016/0096-3003(89)90092-1
Google Scholar
[3]
J. Baxley, S. Robinson, Coexistence in the unstirred chemostat, J. Appl. Math. Comput. Vol. 89, pp.41-65, (1998).
Google Scholar
[4]
L. Dung, H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor, J. Differential Equations. Vol. 130, pp.59-91, (1996).
DOI: 10.1006/jdeq.1996.0132
Google Scholar
[5]
S.B. Hsu, P. Waltman, On a system of reaction-diffusion equations arising from competition in the unstirred chemostat, SIAM J. Appl. Math. Vol. 53, pp.1026-1044, (1993).
DOI: 10.1137/0153051
Google Scholar
[6]
S.B. Hsu, H. L. Smith, and P. Waltman, Dynamics of competition in the unstirred chemstat, Canad. Appl. Math. Quart., vol. 2, pp.461-483, (1994).
Google Scholar
[7]
J.H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal. }, Vol. 39, pp.817-835, (2000).
DOI: 10.1016/s0362-546x(98)00250-8
Google Scholar
[8]
J.H. Wu, G.S.K. Wolkowicz, ``A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, Vol. 172, pp.300-332, (2001).
DOI: 10.1006/jdeq.2000.3870
Google Scholar
[9]
J.H. Wu, H. Nie, G.S.K. Wolkowicz, `` A mathematical model of competition for two essential resources in the unstirred chemostat, SIAM J. Appl. Math. Vol. 65, pp.209-229, (2004).
DOI: 10.1137/s0036139903423285
Google Scholar
[10]
H. Nie, J.H. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Vol. 16(4), pp.989-1009, (2006).
DOI: 10.1142/s0218127406015246
Google Scholar
[11]
H. Nie, J.H. Wu, Asymptotic behavior of an unstirred chemostat model with internal inhibitor, J. Math. Anal. Appl. , vol. 334, pp.889-908, (2007).
DOI: 10.1016/j.jmaa.2007.01.014
Google Scholar
[12]
H. Nie, J.H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat, J. Math. Anal. Appl., Vol. 355, pp.231-242, (2009).
DOI: 10.1016/j.jmaa.2009.01.045
Google Scholar
[13]
J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., Vol. 44, pp.331-340, (1975).
DOI: 10.2307/3866
Google Scholar
[14]
D.L. DeAngelis, R.A. Goldstein, and R.V. O'Neill, A model for trophic interaction, Ecology, Vol. 56, pp.881-892, (1975).
Google Scholar
[15]
Gert Huisman and Rob J. De Boer, A formal derivation of the ``Beddington" functional response, J. theor. Biol., Vol. 185, pp.389-400, (1997).
DOI: 10.1006/jtbi.1996.0318
Google Scholar
[16]
W.H. Ruan,W. Feng, On the fixed point index and multiple steady-state solutions of reaction-diffusion systems, Differential Integral Equations, Vol. 8(2), pp.371-392, (1995).
DOI: 10.57262/die/1369083475
Google Scholar
[17]
E. N. Dancer. On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., vol. 91(1)pp.131-151, (1983).
DOI: 10.1016/0022-247x(83)90098-7
Google Scholar
[18]
R. S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl. , Vol, 257(1), pp.206-222, (2001).
DOI: 10.1006/jmaa.2000.7343
Google Scholar