Coexistence and Numerical Solutions of the Unstirred Chemostat Model

Article Preview

Abstract:

This paper studies a competition model between two species for two resources in the chemostat with the Beddington-DeAngelis functional response. The sufficient condition to the coexistence of positive steady state solutions is obtained by the mathematical methods of the fixed point degree theory in cones. Finally, Some results of numerical simulations is presented to prove and complement the previous mathematical results by numerical computation method. Furthermore, the research result implies that two species in the biological environment can be coexistence after a long time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 532-533)

Pages:

708-713

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.L. Smith, P. Waltman, The Theory of the Chemosta, Cambridge Univ. Press. Cambridge, UK, (1995).

Google Scholar

[2] W.H. So, P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput. Vol. 32, PP. 169-183, (1989).

DOI: 10.1016/0096-3003(89)90092-1

Google Scholar

[3] J. Baxley, S. Robinson, Coexistence in the unstirred chemostat, J. Appl. Math. Comput. Vol. 89, pp.41-65, (1998).

Google Scholar

[4] L. Dung, H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor, J. Differential Equations. Vol. 130, pp.59-91, (1996).

DOI: 10.1006/jdeq.1996.0132

Google Scholar

[5] S.B. Hsu, P. Waltman, On a system of reaction-diffusion equations arising from competition in the unstirred chemostat, SIAM J. Appl. Math. Vol. 53, pp.1026-1044, (1993).

DOI: 10.1137/0153051

Google Scholar

[6] S.B. Hsu, H. L. Smith, and P. Waltman, Dynamics of competition in the unstirred chemstat, Canad. Appl. Math. Quart., vol. 2, pp.461-483, (1994).

Google Scholar

[7] J.H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal. }, Vol. 39, pp.817-835, (2000).

DOI: 10.1016/s0362-546x(98)00250-8

Google Scholar

[8] J.H. Wu, G.S.K. Wolkowicz, ``A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, Vol. 172, pp.300-332, (2001).

DOI: 10.1006/jdeq.2000.3870

Google Scholar

[9] J.H. Wu, H. Nie, G.S.K. Wolkowicz, `` A mathematical model of competition for two essential resources in the unstirred chemostat, SIAM J. Appl. Math. Vol. 65, pp.209-229, (2004).

DOI: 10.1137/s0036139903423285

Google Scholar

[10] H. Nie, J.H. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Vol. 16(4), pp.989-1009, (2006).

DOI: 10.1142/s0218127406015246

Google Scholar

[11] H. Nie, J.H. Wu, Asymptotic behavior of an unstirred chemostat model with internal inhibitor, J. Math. Anal. Appl. , vol. 334, pp.889-908, (2007).

DOI: 10.1016/j.jmaa.2007.01.014

Google Scholar

[12] H. Nie, J.H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat, J. Math. Anal. Appl., Vol. 355, pp.231-242, (2009).

DOI: 10.1016/j.jmaa.2009.01.045

Google Scholar

[13] J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., Vol. 44, pp.331-340, (1975).

DOI: 10.2307/3866

Google Scholar

[14] D.L. DeAngelis, R.A. Goldstein, and R.V. O'Neill, A model for trophic interaction, Ecology, Vol. 56, pp.881-892, (1975).

Google Scholar

[15] Gert Huisman and Rob J. De Boer, A formal derivation of the ``Beddington" functional response, J. theor. Biol., Vol. 185, pp.389-400, (1997).

DOI: 10.1006/jtbi.1996.0318

Google Scholar

[16] W.H. Ruan,W. Feng, On the fixed point index and multiple steady-state solutions of reaction-diffusion systems, Differential Integral Equations, Vol. 8(2), pp.371-392, (1995).

DOI: 10.57262/die/1369083475

Google Scholar

[17] E. N. Dancer. On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., vol. 91(1)pp.131-151, (1983).

DOI: 10.1016/0022-247x(83)90098-7

Google Scholar

[18] R. S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl. , Vol, 257(1), pp.206-222, (2001).

DOI: 10.1006/jmaa.2000.7343

Google Scholar