[1]
Bi J.Z., Shao C.W., Miao G.D., Ma H.Y., Chen S.L., Isolation and characterization of 12 microsatellite loci from cutlassfish (Trichiurus haumela). Conserv Genet. Vol.10 (2009), pp.1171-1173.
DOI: 10.1007/s10592-008-9736-5
Google Scholar
[2]
Jackson, T.C., Acuff, G.R., & Dickson, J.S., Meat, poultry and seafood. In M. P.Doyle, & T. J. Beuchat (Eds.), Food microbiology: fundamentals and frontiers Washington, D.C: ASM Press, 1997, p.83−100.
Google Scholar
[3]
Hilario, E., Buckley, T. R., & Young, J.M.. Improved resolution of the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie van Leeuwenhoek, Vol.86 (2004), p.51−64.
DOI: 10.1023/b:anto.0000024910.57117.16
Google Scholar
[4]
Gennari M, Tomaselli S, Cotrona V. The microflora of fresh and spoiled sardines (Sardina pilchadus) caught in Adriatic (Mediterranean) sea and stored in ice. Food Microbiology, Vol.16 (1999), pp.15-28.
DOI: 10.1006/fmic.1998.0210
Google Scholar
[5]
Taoukis P S, Koutsoumanis K, Nychas G J E., Use of time temperature integrators and predictive modeling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, Vol.53 (1999), pp.1-31.
DOI: 10.1016/s0168-1605(99)00142-7
Google Scholar
[6]
Gram L, Huss H H., Microbiological spoilage of fish and fish product. International Journal of Food Microbiology, Vol. 33(1996), pp.121-137.
DOI: 10.1016/0168-1605(96)01134-8
Google Scholar
[7]
Gillespie N C, Maerae I C., The bacterial flora of some Queensland fish and its ability to cause spoilage. Journal of Applied Bacteriology, Vol. 39(1975), pp.91-100.
DOI: 10.1111/j.1365-2672.1975.tb00549.x
Google Scholar
[8]
Amann R.I,Ludwig W,Schlefer K.H., Phylogenetic identification in situ detection of individual microbial cells without cultivation. Microbial Reviews, Vol. 59(1995), pp.143-169.
DOI: 10.1128/mr.59.1.143-169.1995
Google Scholar
[9]
Pace N.R., A Molecular View of Microbial Diversity and the Biosphere. Science, Vol. 276(1997), pp.734-740.
DOI: 10.1126/science.276.5313.734
Google Scholar
[10]
Blixt, Y., & Borch, E., Comparison of shelf life of vacuum-packed pork and beef. Meat Science, Vol. 60(2002), p.371−378.
DOI: 10.1016/s0309-1740(01)00145-0
Google Scholar
[11]
Ercolini, D., PCR–DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of Microbiological Methods, Vol. 56(2004), p.297−314.
DOI: 10.1016/j.mimet.2003.11.006
Google Scholar
[12]
Maria B.H., Morten S., Bjorn T.L., et.al, Characteriasation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiology, Vol.24 (2007), pp.362-371.
DOI: 10.1016/j.fm.2006.07.018
Google Scholar
[13]
Maria B.H., Bjorn T.L., Morten S., Jan T.R., Characterisation of the bacterial flora of modified atmosphere packaged farmed Atlantic cod (Gadus morhua) by PCR-DGGE of conserved 16S rRNA gene regions. International Journal of Food Microbiology, Vol.117 (2007), pp.68-75.
DOI: 10.1016/j.ijfoodmicro.2007.02.022
Google Scholar
[14]
Jiang Y., Gao F., Xu X.L., Su Y., Ye K.P., Zhou G.H., Changes in the bacterial communities of vacuum-packaged pork during chilled storage analyzed by PCR-DGGE. Meat Science, Vol. 86(2010), pp.889-895.
DOI: 10.1016/j.meatsci.2010.05.021
Google Scholar
[15]
Satokari, R. M., Vaughan, E. E., Akkermans, A. D. L., Saarela, M., & de Vos, W. M., Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel eletrophoresis. Applied and Environmental Microbiology, Vol.67 (2001), p.504−513.
DOI: 10.1128/aem.67.2.504-513.2001
Google Scholar
[16]
Randazzo, C. L., Torriani, S., Akkermans, A. D. L., de Vos,W. M., & Vaughan, E. E., Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Applied and Environmental Microbiology, Vol. 68(2002), p.1882−1892.
DOI: 10.1128/aem.68.4.1882-1892.2002
Google Scholar
[17]
Sambrook.J., DAVID W.RUSSELL, Molecular Cloning a laboratory Manual, USA. (2002)
Google Scholar
[18]
Muyzer G., DGGE/TGGE a method for identifying genes from natural ecosystems, Current of Opinion Microbiology, Vol.2(1999), pp.317-322.
DOI: 10.1016/s1369-5274(99)80055-1
Google Scholar
[19]
Muyzer, G. de Weal, E.C., & Uitterlinden, A., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied of Environment Microbiology, Vol. 59(1993), pp.695-700.
DOI: 10.1128/aem.59.3.695-700.1993
Google Scholar
[20]
Muyzer G., Smalla, K., Application of denaturing gradient gel electrophoresis(DGGE)and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek, Vol. 73(1998), pp.127-141.
DOI: 10.1007/springerreference_76317
Google Scholar
[21]
Nübel, U., Engelen, B., et al., Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel elelectrophoresis, Journal of Bacteriology, Vol.178(1996), pp.5636-5643.
DOI: 10.1128/jb.178.19.5636-5643.1996
Google Scholar
[22]
Theelen, B., Silvestri, M., Gueho, E., van Belkum, A., & Boekhout, T., Identification and typing of Malassezia yeasts using amplified fragment length polymorphisms (AFLP), random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE). FEMS Yeast Research, Vol.1 (2001), pp.79-86.
DOI: 10.1111/j.1567-1364.2001.tb00018.x
Google Scholar
[23]
Gill C.O., Extending the storage life of raw. Meat Science, Vol.43 (1996), pp.99-109.
DOI: 10.1016/0309-1740(96)00058-7
Google Scholar
[24]
Gurtler, V., Garrie, H.D., & Mayall, B.C., Denaturing gradient gel electrophoretic multilocus sequence typing of Staphylococcus aureus isolates. Electrophoresis, Vol.23 (2002), pp.3310-3320.
Google Scholar