Oxygen Content Change Characters and the Influence Superconductivity in the Doped YBCO Systems

Article Preview

Abstract:

The YBa2Cu3-x(doped element)xO7-δ samples were prepared by solid-state reactions and studied by means of XRD, positron annihilation technique and simulation calculation. The results show the local electron density ne saturation and variations of oxygen content, which can be explained by the cluster effect. Another important new result is that the superconductivity does not depend directly on the valence electron density with different dopant. The Tc seems to lose the association with the ne variation. The dopants can be regarded as a kind of defects is similarly an adding or a losing oxygen ion. Oxygen interstitials reflect fractal distributions of dopants. The oxygen content and distribution reflect the superconductivity of the samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1241-1246

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. K. Morr, A. V. Balatsky: Phys. Rev. Lett.,Vol. 90 (2003), p.067005.

Google Scholar

[2] S. Q. Guo, F. L. Wang, Y. L. Zhou, B. R. Zhao and J. Gao: Chinese Phys. ,Vol.11(2002), p.379.

Google Scholar

[3] R. Lortz, C. Meingast and A. I. Rykov: Phys. Rev. Lett., Vol.91 (2003), p.207001.

Google Scholar

[4] Y. K. Kuo, C. W. Schneider, M. J. Skove, M. V. Nevitt, G. X. Tessema, and J. J. McGee: Phys. Rev. B ,Vol.56 (1997), p.6201.

Google Scholar

[5] J. M. Tarascon, P. Barboux, P. F. Miceli, L. H. Greene, G. W. Hull, M. Eibschutz, and S. A. Sunshine: Phys. Rev. B, Vol.37 (1988), p.7458.

Google Scholar

[6] Y. C. Jean, C. S. Sunder, A. Bharathi, J. Kyle, H. Nakanishi, P. K. Tseng, P. H. Hor, R. L. Meng, Z. J. Huang, C. W. Chu, Z. Z. Wang, P. E. A. Turchi, R. H. Howell, A. L. Wachs, and M. J. Fluss: Phys. Rev. Lett.,Vol.64 (1990), p.1593.

DOI: 10.1103/physrevlett.64.1593

Google Scholar

[7] R. S. Horland and T. H. Geballe: Phys. Rev. B, Vol.39 (1989), p.9017.

Google Scholar

[8] D. M. Ginsberg: Physical Properties of High Temperature Superconductors Ⅱ (World Scientific, Singapore, 1990).

Google Scholar

[9] L. Hoffmann, A. A. Manuel, M. Peter, E. walker, M. Gauthier, A. Shukla, B. Barbiellini, S. Massidda, Gh. Adam, W. N. Hardy, and R. X. Liang: Phys. Rev. Lett., Vol.71 (1993), p.4047.

Google Scholar

[10] P. L. Li, J, C. Zhang, G. X. Cao, D. M. Den, L. H. Liu, C. Dong, C. Jing, and S. X. Cao: Acta Phys. Sin., Vol.53 (2004), p.1223.

Google Scholar

[11] Michela Fratini, Nicola Poccia, Alessandro Ricci, Gaetano Campi, Manfred Burghammer, Gabriel Aeppli and Antonio Bianconi: Nature, Vol.466 (2010), p.841.

DOI: 10.1038/nature09260

Google Scholar

[12] M. S. Islam and C. Ananthamohan: Phys. Rev. B, Vol.44 (1991), p.9492.

Google Scholar

[13] Pinglin Li, Aihua Wang, Yongtao Tian, Xiaoxia Wang, Yong Ji, Yimin Zhang, Liming Gao and Jie Zhang: Materials Science Forum., Vol. 546-549 (2007), p.2119.

Google Scholar

[14] B. Chakraborty: Phys. Rev. B, Vol.39 (1989), p.215

Google Scholar

[15] K. O. Jensen, R. M. Nieminen and M. J. Puska: J. Phys.: Condens. Matter, Vol.1 (1989), p.3727.

Google Scholar

[16] A. Bharathi, C. S. Sundar and Y. Hariharan: J. Phys.: Condens. Matter, Vol.1 (1989), p.1467.

Google Scholar

[17] J. D. Jorgensen: Phys. Today, Vol.44 (1991), p.34.

Google Scholar

[18] Pinglin Li, Jincang Zhang, Guixin Cao, Chao Jing and Shixun Cao. Phys. Rev. B, Vol.69 (2004), p.224517.

Google Scholar