[1]
A.Hillerborg, M. Modeer. and P. E., Petersson Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite element, Cement and Concrete Research, vol.6 (1976), pp.773-781.
DOI: 10.1016/0008-8846(76)90007-7
Google Scholar
[2]
Z. P. Bazantand and B. H. Oh, Crack band theory for fracture of concrete, Material Structures, vol. 16 (1983), pp.155-177.
Google Scholar
[3]
L. Elfgren, Fracture Mechanics of Concrete Structures: from Theory to Applications, eport RILEM, FMA-90, Chapman and Hall, LTK (1989).
Google Scholar
[4]
A. Carpinteri, Application of fracture mechanics to reinforced concrete, Taylor & Francis (2007).
Google Scholar
[5]
J. Isenberg, Finite Element Analysis of Reinforced Concrete Structures II, American Society of Civil Engineers, New York, USA (1993).
Google Scholar
[6]
P. E. Petersson, Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Ph.D. Thesis, TVBM- 1006, Lund University, Sweden (1981).
Google Scholar
[7]
D. A. Hordijk, J. G. M. Van Mier, and H. W. Reinhardt, Fracture mechanics parameters of concrete from uni-axial tensile tests as influenced by specimen length, in 'Proceedings of the SEM- RILEM Int. Conf. on Fracture of Concrete and Rock', edited by S. P. Shah and S. E. Swartz, Houston, USA (1989), pp.138-149.
DOI: 10.1007/978-1-4612-3578-1_13
Google Scholar
[8]
J. G. Rots, and R. Borst, Analysis of concrete fracture in "direct" tension', International Journal of Solids and Structures, vol. 25(12) (1989), pp.1381-1394.
DOI: 10.1016/0020-7683(89)90107-8
Google Scholar
[9]
F. P. Zhou, Some Aspects of Tensile Fracture Behaviour and Structural Response of Cementitious Materials, Licentiate thesis, TVBM-1008, Lund University, Sweden, (1988).
Google Scholar
[11]
J. G. M. van Mier, Fracture Process of Concrete: Assessment of Materials Parameters for Fracture Models', CRC Press (1997).
Google Scholar
[12]
RILEM Draft Recommendation, Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams,' Materials Structures, vol. 18 (1985), pp.185-290.
DOI: 10.1007/bf02498757
Google Scholar
[13]
V. C. Li, C.M. Chan, and C. K. Y. Leung, Experimental determination of the tension-softening relations for cementitious composites', Cement and Concrete Research, vol. 17 (1987), pp.441-452.
DOI: 10.1016/0008-8846(87)90008-1
Google Scholar
[14]
F. H. Wittman, K. Rokugo, E. Bruhwiler, H. Mihashi, and P. Simoni, Fracture energy and strain softening of concrete as determined by means of compact tension specimens, Materials Structures, vol. 21 (1988), pp.21-32.
DOI: 10.1007/bf02472525
Google Scholar
[15]
P. E. Roelfstra, and F. H. Wittmann, numerical method to link strain softening with failure of concrete, in Fracture Toughness and Fracture Energy, edited by F. H. Wittmam, Elsevier, London (1986) pp.163-174.
Google Scholar
[16]
G. V. Guinea, J. Planas, and M. Elices, A general bilinear fit for the softening curve of concrete, Materials Structures, vol. 27 (1994), pp.99-105.
DOI: 10.1007/bf02472827
Google Scholar
[17]
D. A. Hordijk, Local approach to fatigue of concrete, Ph.D. thesis, Delft University of Technology, The Netherlands (1991).
Google Scholar
[18]
G. V. Guinea, J. Planas and M. Elices, Measurement of the fracture energy using three-point bend tests: Part 1- Influence of experimental procedures', Materials Structures, vol. 25 (1992) 212-218.
DOI: 10.1007/bf02473065
Google Scholar
[19]
Planas, J.. Elices, M. and Guinea, G. V., 'Measurement of the fracture energy using three-point bend tests: Part 2 - Influence of bulk energy dissipation', Materials Structures, vol. 25 (1992) 305-312.
DOI: 10.1007/bf02472671
Google Scholar
[20]
Zhou, F.P. and Balendran, R. V. Size effect on flexural, splitting tensile, and torsional strengths of high strength concrete, Cement and Concrete Research, vol. 28 (12) (1998), pp.1725-1736.
DOI: 10.1016/s0008-8846(98)00157-4
Google Scholar
[21]
A. M. Neville, Properties of concrete, 4th edition, Prentice Hall, England (2002).
Google Scholar
[22]
RILEM Draft Recommendation, TC 89-FMT fracture mechanics of concrete-test methods, Materials Structures, vol. 23 (1990), pp.457-460.
Google Scholar
[23]
B. L. Karihaloo, and P. Nallathambi, Notched beam test: mode I fracture toughness, in Fracture Mechanics Test Methods for Concrete, RILEM Report 5, edited by S. P. Shah and A. Carpinteri, Chapman and Hall, UK (1991) pp.1-86.
DOI: 10.1201/9781482267532-8
Google Scholar
[24]
S. P. Timoshenko, and J. N.Goodier, Theory of elasticity, McGraw-Hill (1970).
Google Scholar
[25]
H. Tada, P.C. Paris. and G. R. Irwin, The Stress Analysis of Crack Handbook, (Pel Research Corp, Hellertown (1975).
Google Scholar
[26]
A. Hillerborg, Application of fracture mechanics to concrete, TVBM-3030, Lund University, Sweden (1988).
Google Scholar
[27]
Z. P. Bazant, Fracture energy of heterogeneous materials and similitude, in SEMMLEM Int. Conference on Fracture of Concrete and Rock, edited by S. P. Shah and S. E. Swartz. (Martinus Nijhoff Publishers, USA (1987), pp.229-238.
Google Scholar
[28]
J. Planas, and M. Elices, Towards a measure of GF: an analysis of experimental results. In Fracture Toughness and Fracture Energy of Concrete, edited by F. H. Wittmam, Elsevier Science Publishers (1986), pp.38-390.
Google Scholar
[29]
W.C. Tang, T.Y. Lo and W K. Chan, Fracture Properties of Normal and Lightweight High Strength Concrete, Magazine of Concrete Research, Vol. 60(4) (2008), pp.237-244.
DOI: 10.1680/macr.2008.60.4.237
Google Scholar
[30]
M. Modeer, A Fracture Mechanics Approach to the Failure Analysis of Concrete Materials, Ph.D. Thesis, TVBM-1001. Lund University. Sweden (1979).
Google Scholar