Experimental Research on Sintering Amorphous Based Material with Iron-Tailings

Article Preview

Abstract:

The homogeneous mixture of iron tailings powder and glass powder is as the experimental material to sinter the amorphous based material. The particle size of the glass powder is less than 0.15 millimeter, and the particle size of the iron tailings powder is from 0.07 millimeter to 2 millimeter. The weight percentages of glass powder are 10% and 15% and 22% and 25% in the experimental material, respectively. The heating rate is about 170°C•min-1 and the maximum sintering temperature is 1150°C.They are proved by the analysis results of thermo-gravimetric analysis and differential thermal analysis with the experimental material. And the sintering temperature and the heating rate of the sintering experiments were based on them. The facts that the sintered material is mostly made up of amorphous substance and contains a certain amount of crystals and it’s micromechanism is amorphous are proved out by the experiments of scanning electron microscope. The testing results of the sintered material are these that the maximum density is 2.6g.cm-1, the maximum compressive strength is 94MPa, the maximum tensile strength is 5MPa, the maximum bending strength is 28MPa, the hydroscopicity and the radioactivity is zero, and it can not be eroded by acids and alkalis. When the sintered material contains 22% glass powder, the mechanical properties of the sintered material sample is same as marble.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

722-729

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cheng-jun LIU, Pei-yang SHI, Da-yong ZHANG, etal: Development of Glass Ceramics Made From Ferrous Tailings and Slag in China. Journal of Iron and Steel Research(International) Vol.14 No.2 (2007), pp.73-78

DOI: 10.1016/s1006-706x(07)60032-6

Google Scholar

[2] Das S.K., Kumar Sanjay, Ramachandrarao P: Exploitation of iron ore tailing for the development of ceramic tiles Waste Management Vol.20 No.8 (2000), pp.725-729

DOI: 10.1016/s0956-053x(00)00034-9

Google Scholar

[3] Zhong-lai Yi, Heng-hu Sun, Xiu-quan Wei, etal: Iron ore tailings used for the preparation of cementitious material by compound thermal activation. International Journal of Minerals: Metallurgy and Materials Vol.16 No.3 (2009), pp.355-358

DOI: 10.1016/s1674-4799(09)60064-9

Google Scholar

[4] E. Bernardo: Micro- and macro-cellular sintered glass-ceramics from wastes. Journal of the European Ceramic Society Vol.27 No.6 (2007), pp.2415-2422

DOI: 10.1016/j.jeurceramsoc.2006.10.003

Google Scholar

[5] A.A. Francis: Conversion of blast furnace slag into new glass-ceramic material. Journal of the European Ceramic Society Vol.24 No.9 (2004), pp.2819-2824

DOI: 10.1016/j.jeurceramsoc.2003.08.019

Google Scholar

[6] M.L. Öveçoǧlu: Microstructural Characterization and Physical Properties of a Slag-based Glass-ceramic Crystallized at 950 and 1100°C. Journal of the European Ceramic Society Vol.18 No.2 (1998), pp.161-168

DOI: 10.1016/s0955-2219(97)00094-0

Google Scholar

[7] Ilker Ozdemir, Senol Yilmaz: Processing of unglazed ceramic tiles from blast furnace slag. Journal of Materials Processing Technology Vol.183 No.1 (2007), pp.13-17

DOI: 10.1016/j.jmatprotec.2006.09.002

Google Scholar

[8] A. Karamberi, A. Moutsatsou: Vitrification of lignite fly ash and metal slags for the production of glass and glass ceramics. China Particuology Vol.4 No.5 (2006), pp.250-253

DOI: 10.1016/s1672-2515(07)60269-3

Google Scholar

[9] E. Bernardo, R. Castellan, S. Hreglich: Sintered glass-ceramics from mixtures of wastes. Ceramics International Vol.33 No.1 (2007), pp.27-33

DOI: 10.1016/j.ceramint.2005.07.012

Google Scholar

[10] Jiakuan Yang, Bo Xiao, Aldo R. Boccaccini: Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash. Fuel Vol.88 No.1 (2009), pp.1275-1280

DOI: 10.1016/j.fuel.2009.01.019

Google Scholar

[11] Eugeniusz Zych, Adam Walasek, Anna Szemik-Hojniak: Variation of emission color of Y3Al5O12:Ce induced by thermal treatment at reducing atmosphere. Journal of Alloys and Compounds Vol.45 No.1-2 (2008), pp.582-585

DOI: 10.1016/j.jallcom.2007.04.116

Google Scholar

[12] M. Rezvani, B. Eftekhari Yekta, V.K. Marghussian: Utilization of DTA in determination of crystallization mechanism in SiO2-Al2O3-CaO-MgO(R2O)glasses in presence of various nuclei. Journal of the European Ceramic Society Vol.25 No.9 (2005), pp.1525-1530

DOI: 10.1016/j.jeurceramsoc.2004.05.010

Google Scholar

[13] Seon W Lee, K.B Shim, K.H Auh, etal: Activation energy of crystal growth in PbTiO3 glass using differential thermal analysis. Journal of Non-Crystalline Solids Vol.248 No.2-3 (1999), pp.127-136

DOI: 10.1016/s0022-3093(99)00246-x

Google Scholar

[14] A. Goel, D.U. Tulyaganov, S. Agathopoulos, etal: Crystallization behaviour,structure and properties of sintered glasses in the diopside-Ca-Tschermak system. Journal of the European Ceramic Society Vol.27 No.10 (2007), pp.3231-3238

DOI: 10.1016/j.jeurceramsoc.2007.01.018

Google Scholar

[15] Francisco Jose Torres, Javier Alarcón: Mechanism of crystallization of pyroxene-based glass-ceramic glazes. Journal of Non-Crystalline Solids Vol.347 No.1-3 (2004), pp.45-51

DOI: 10.1016/j.jnoncrysol.2004.09.003

Google Scholar

[16] Tomohiro Toya, Yoshikazu Kameshima, Atsuo Yasumori, etal: Preparation and properties of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining. Journal of the European Ceramic Society Vol.24 No.8 (2004), pp.2367-2372

DOI: 10.1016/s0955-2219(03)00628-9

Google Scholar

[17] Jung D.S., Kang Y.C: Preparation and characteristics of a BaO-Al2O3-B2O3-SiO2-La2O3 glass ceramic via spray pyrolysis. Applied Physics A Vol.94 No.2 (2009), pp.411-417

DOI: 10.1007/s00339-008-4823-5

Google Scholar

[18] Ovecoglu M.L., Kuban B., Ozer H: Characterization and Crystallization Kinetics of a Diopside-Based Glass-Ceramic Developed from Glass Industry Raw Materials. Journul of the Europeun Cerumic Society Vol.17 No.7 (1997), pp.957-962

DOI: 10.1016/s0955-2219(96)00200-2

Google Scholar

[19] Zhang Xianyu: Decorative Glass Production by Utilizing Copper Ore Tails with High Content of Barium. Environmental Engineering Vol.18 No.2 (2000), pp.42-43

Google Scholar

[20] Liu Weiping, Qiu Dingfan, Cang Daqiang: Study on the Copper Tailings Used in Decorated Materials. China Mining Magazine Vol.12 No.9 (2003), pp.17-18

Google Scholar

[21] Li Yachao: Study on Preparation of Architectural Decorative Materials from Anshan-type Iron Ore Tailings. Chunchun: Jilin University, (2011)

Google Scholar

[22] Prabhat K. Gupta: Non-crystalline solids: glasses and amorphous solids. Journal of Non-Crystalline Solids Vol.195 No.1 (1996), pp.158-164

DOI: 10.1016/0022-3093(95)00502-1

Google Scholar

[23] M.L. Guzmán-Castillo, X. Bokhimi, A. Rodrıguez-Hernández, etal.: The surface energy of quasi-amorphous γ alumina calculated from the temperature of the γ→α transition. Journal of Non-Crystalline Solids Vol.329 No.1-3 (2003), pp.53-56

DOI: 10.1016/j.jnoncrysol.2003.08.012

Google Scholar