Effects of Ni/Ti Ratio and Heat-Treatment on Transformation Temperature, Mechanical Properties and Shape Recovery Strain of Ni-Ti-Nb Alloy

Article Preview

Abstract:

Ni-Ti-Nb wide hysteresis shape memory alloys of three Ni/Ti ratio components were manufactured by vacuum induction melting. The transformation temperature, mechanical properties and recovery strain were studied by using differential scanning calorimeter and material testing machine. It shows that with Ni/Ti ratio increase, the transformation temperature and mechanical properties decrease. Shape recovery strain is higher when Ni/Ti ratio is 1.068, with recovery strain range from 6.8 to 7.5. The faster the cooling rate after annealing, the higher is the transformation temperature, and the lower are the mechanical properties and recovery strain.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

919-923

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. V. Humbeeck: Mater. Sci. Eng. A Vol. A273-275 (1999), p.134

Google Scholar

[2] T. Duerig, A. Pelton and D. StÖckel: Mater. Sci. Eng. A Vol. A273–275 (1999), p.149

Google Scholar

[3] Zhirong He, Jingen Zhou and S. Miyazaki: Acta Metall Sin Vol. 39(6) (2003), p.617 (In Chinese)

Google Scholar

[4] Zhirong He, Fang Wang and Jingen Zhou: Heat Treat. Met. Vol. 31(9) (2006), p.17 (In Chinese)

Google Scholar

[5] J. I. Kim, Y. Liu and S. Miyazaki: Acta Mater. Vol. 52 ( 2004), p.487

Google Scholar

[6] X. Huang and Y. Liu: Scripta Mater. Vol. 45 (2001), p.153

Google Scholar

[7] Guanjun Yang and Ju Deng: Rare Met Mater Eng Vol. 27(6) (1998), p.322 (In Chinese)

Google Scholar

[8] Ying Yan, Wei Jin and Shaoyu Qiu. Chinese Journal of Materials Research Vol.18(2) (2004), p.199 (In Chinese)

Google Scholar

[9] Yufeng Zheng, Wei Cai, Yongqian Wang, Yichun Luo and Liancheng Zhao: J. Mater. Sci. Technol. Vol. 14 (1998), p.37

Google Scholar

[10] Huachu Li, Baodong Gao, Jiangbo Wang, Zhaowei Feng and Xujun Mi: Rare Metals Vol. 28(4) (2004), p.794 (In Chinese)

Google Scholar

[11] X. M. He, L. J. Rong, D. S. Yan and Y. Y. Li. Mater.Sci.Eng.A Vol.371 (2004), p.193

Google Scholar

[12] N. N. Popov, S. D. Prokoshkin, M. Y. Sidorkin, T.I. Sysoeva, D.V. Borovkov, A.A. Aushev, I.V. Kostylev and A. E. Gusarov: Russ. Metall. (Metally) Vol.1 (2007), p.59

DOI: 10.1134/s0036029507010119

Google Scholar

[13] K. Uchida, N. Shigenaka, T. Sakuma, Y. Sutou and K. Yamauchi: Mater. Trans. Vol.48(3) (2007), p.445

Google Scholar

[14] Yazhuo Yang, Xinqing Zhao, Lingjie Meng, Shanglin Yang and Huibin Xu. Acta Metall. Sin. Vol.41(6) (2005), p.627 (In Chinese)

Google Scholar

[15] Xiangming He, Lijian Rong, Desheng Yan, Zhimin Jiang and Yiyi Li: Metall. Mater. Trans. A. Vol.35A (2004), p.2783

Google Scholar

[16] X. M. He and L. J. Rong: Metals and Materials International, Vol.12(4) (2006), p.279

Google Scholar

[17] K. Otsuka and X. Ren: Prog. Mater. Sci. Vol.50 (2005), p.511

Google Scholar