[1]
Y.X. Zhang, C.H. Yang, Recent development in finite element analysis for laminated composite plates, Comp. Mat. 88 (2009) 147-157.
DOI: 10.1016/j.compstruct.2008.02.014
Google Scholar
[2]
U. Icardi U, Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up, Compos. B. Eng. 29 (1998) 425–41.
DOI: 10.1016/s1359-8368(97)00040-1
Google Scholar
[3]
A. Chakrabarti, A.H. Sheikh, Finite element analysis of free-edge stresses in composite laminates under mechanical and thermal loading, Compos. Sci. Tech. 69 (2009) 40–49.
DOI: 10.1016/j.compscitech.2007.10.055
Google Scholar
[4]
C. Wanji, W. Zhen, A selective review on recent development of displacementbased laminated plate theories, Recent Pat. Mech. Eng. 1 (2008) 29–44.
DOI: 10.2174/2212797610801010029
Google Scholar
[5]
T. Kant T, K. Swaminathan K, Estimation of transverse/interlaminar stresses in laminated composites a selective review and survey of current developments, Compos. Struct. 49 (2000) 65–75.
DOI: 10.1016/s0263-8223(99)00126-9
Google Scholar
[6]
S.S. Ramesh, C.M. Wang, J.N. Reddy, K.K. Ang, A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates, Comp. Struct. 91 (2009) 337-357.
DOI: 10.1016/j.compstruct.2009.06.001
Google Scholar
[7]
E. Rank, R. Krause, K. Preusch, On the accuracy of p-version elements for the Reissner–Mindlin plate problem, Int. J. Numer. Meth. Eng. 43 (1988) 51–67.
DOI: 10.1002/(sici)1097-0207(19980915)43:1<51::aid-nme382>3.0.co;2-t
Google Scholar
[8]
I. Babuska, B.A. Szabo, I.N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515–545.
DOI: 10.1137/0718033
Google Scholar
[9]
B.A. Szabo, A.K. Mehta, p-Convergent finite element approximations in fracture mechanics. Int. J. Numer. Meth. Eng. 12 (1978) 551–60.
DOI: 10.1002/nme.1620120313
Google Scholar
[10]
P.K. Basu, M.P. Rossow, B.A. Szabo, Theoretical documentation and user's manual: COMET-X, Report No. R-340, Federal Railroad Administration (1977).
Google Scholar
[11]
K.S. Woo, High precision analysis of plates and cylindrical shells in the presence of singularities by the p-version of the finite element method, Ph. D. Dissertation, Vanderbilt University (1988).
Google Scholar
[12]
M.N. Akhtar, Stability analysis of thin-walled members using p-version of finite element method, Ph. D. Dissertation, Vanderbilt University (1989).
Google Scholar
[13]
N.U. Ahmed, Higher order analysis of laminated composite based on p-version of the finite element method, Ph. D. Dissertation, Vanderbilt University (1989).
Google Scholar
[14]
D.K. Ghosh, Parallelism in adaptive p-version finite element analysis, Ph. D. Dissertation, Vanderbilt University (1996).
Google Scholar
[15]
A.H. Sheikh, A. Chakrabarti, A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates, Fin. Elem. Ana. Des. 39 (2003) 883-903.
DOI: 10.1016/s0168-874x(02)00137-3
Google Scholar
[16]
S.D. Kulkarni, S. Kapuria, A new discrete Kirchhoff quadrilateral element based on the third-order theory for composite plates, Comp. Mech. 39(3) (2007) 237-246.
DOI: 10.1007/s00466-005-0020-y
Google Scholar