[1]
M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in optimal design using a homogenization method, Comp. Meth. Appl. Mech. Engrg, vol. 71, p.197–224, 1988.
DOI: 10.1016/0045-7825(88)90086-2
Google Scholar
[2]
M.P. Bendsøe, "Optimal shape design as a material distribution problem," Struct. Optim. Vol. 1, p.193–202, 1989.
Google Scholar
[3]
G.I.N. Rozvany, A critical review of established methods of structural topology optimization, Structural and Multidisciplinary Optimization, vol. 37, p.217–237, 2009.
DOI: 10.1007/s00158-007-0217-0
Google Scholar
[4]
Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21:80–83.
DOI: 10.1007/s001580050170
Google Scholar
[5]
Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. Siam J Control Optim 37:1251–1272
DOI: 10.1137/s0363012997323230
Google Scholar
[6]
Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246.
Google Scholar
[7]
Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comp Phys 104:363–393
DOI: 10.1016/j.jcp.2003.09.032
Google Scholar
[8]
Hajela P, Lee E, Genetic algorithms in truss topology optimization. Int J Solids Struct 32:3341–3357, 1995.
DOI: 10.1016/0020-7683(94)00306-h
Google Scholar
[9]
Sigmund O, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 21(2), p.120–127, 2001.
DOI: 10.1007/s001580050176
Google Scholar
[10]
Alberty J, Carstensen C, Funken S. Remarks around 50 lines of Matlab: short finite element implementation, Numerical Algorithms, vol. 20(2–3), p.117–137, 1999.
DOI: 10.1023/a:1019155918070
Google Scholar
[11]
Alberty J, Carstensen C, Funken S, Klose R, Matlab implementation of the finite element method in elasticity, Computing vol. 69(3), p.239–263, 2002.
DOI: 10.1007/s00607-002-1459-8
Google Scholar
[12]
Bendsøe M, Sigmund O, Topology Optimization. Theory, Methods and Applications, Springer, 2003.
Google Scholar
[13]
Suresh K, A 199-line Matlab code for Pareto-optimal tracing in topology optimization, Structural and Multidisciplinary Optimization, Published online.
DOI: 10.1007/s00158-010-0534-6
Google Scholar
[14]
Challis VJ, A discrete level-set topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 41(3), p.453–464, 2010.
DOI: 10.1007/s00158-009-0430-0
Google Scholar
[15]
Erik Andreassen, Anders Clausen, et al. Efficient topology optimization in MATLAB using 88 lines of code, Structural and Multidisciplinary Optimization, vol. 41(3), p.453–464, 2011.
DOI: 10.1007/s00158-010-0594-7
Google Scholar
[16]
Yair Censor, Stavros A. ZeniosParallel Optimization- Theory, Algorithms, and Applications (Numerical Mathematics and Scientific Computation), Oxford University Press, USA, 1997.
Google Scholar
[17]
Wang Jian, Xu Qiang, Chen Bingzhen et al. Parallel Optimization Scheme for Industrial Steam Cracking Process. Journal of Chemical Engineering of Japan, 36(1): 14-19, 2003.
DOI: 10.1252/jcej.36.14
Google Scholar
[18]
Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD. Parallel global optimization with particle swarm algorithm. International Journal for Numerical Methods in Engineering 2004; 61: 2296-2315.
DOI: 10.1002/nme.1149
Google Scholar
[19]
Koh BI, Reinbolt JA, Fregly BJ, and George AD. Evaluation of parallel decomposition methods for biomechanical optimizations. Computer Methods in Biomechanics and Biomedical Engineering 2004; 7: 215-225.
DOI: 10.1080/10255840412331290398
Google Scholar
[20]
Wu Changyou, Wang Fulin, Ju J inyan, A Multi-Point Parallel Optimization Method for Reducer Design. Mechanical Science and Technology for Aerospace Engineering, Vol. 18 No. 21, 2009.
Google Scholar
[21]
Li Wen, Guo Li, Yuan Hongxing, Wei Yifang, Guan Hua, Parallel implementation and optimization of the sebvhos algorithm, Journal of Electronics, Vol. 28 Issue (3) :277-283, 2011.
DOI: 10.1007/s11767-011-0618-5
Google Scholar
[22]
Nam Ho Kim, Jun Dong, Kyung Kook Choi, Energy flow analysis and design sensitivity of structural problems at high frequencies, Journal of sound and vibration, vol. 269, pp.213-250, 2004.
DOI: 10.1016/s0022-460x(03)00070-1
Google Scholar
[23]
Seonho Cho, Chan-Young Park, et al. Topology design optimization of structures at high frequencies using power flow analysis, Journal of sound and vibration, vol. 298, pp.206-220, (2006)
DOI: 10.1016/j.jsv.2006.05.015
Google Scholar
[24]
Seonho Cho, Seung-Hyun Ha, et al. Topological shape optimization of power flow problems at high frequencies using level set approach, International Journal of Solids and Structures 43172-192, (2006)
DOI: 10.1016/j.ijsolstr.2005.04.033
Google Scholar
[25]
K. Svanberg, The method of moving asymptotes: a new method for structural optimization, International Journal for Numerical Method in Engineering, vol. 24, p.359–373, 1987.
DOI: 10.1002/nme.1620240207
Google Scholar
[26]
Krister Svanberg. A class of globally convergent optimization methods based on conservative convex separable approximzations. SIAM Journal on Optimization, 12(2):555–573, 2002.
DOI: 10.1137/s1052623499362822
Google Scholar
[27]
Sigmund O. Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5): 401–424, 2007.
DOI: 10.1007/s00158-006-0087-x
Google Scholar