[1]
A. Jacob, Globalization of the pultrusion industry, Reinforced Plastics Vol. 50 (2006), P. 38
Google Scholar
[2]
J. Martin, Pultruded composites compete with traditional construction materials, Reinforced Plastics Vol. 50 (2006), P. 20
DOI: 10.1016/s0034-3617(06)71008-6
Google Scholar
[3]
R. Stewart, Pultrusion industry grows steadily in US, Reinforced Plastics Vol. 46 (2002), P. 36
DOI: 10.1016/s0034-3617(02)80199-0
Google Scholar
[4]
H.L. Price, PH.D. Thesis, Old Dominion University, (1979)
Google Scholar
[5]
M. Valliappan, J.A. Roux, J.G. Vaughan, Die and post-die temperature and cure in graphite/epoxy composites, Composites Part B: Engineering Vol. 27 (1996), P. 1
DOI: 10.1016/1359-8368(95)00001-1
Google Scholar
[6]
S.C. Joshi, Y.C. Lam, Three-dimensional finite-element/nodal-control-volume simulation of the pultrusion process with temperature-dependent material properties including resin shrinkage, Composites Science and Technology Vol. 61 (2001), P. 1539
DOI: 10.1016/s0266-3538(01)00056-2
Google Scholar
[7]
X.L. Liu, I.G. Crouch, Y.C. Lam, Application of a general-purpose finite element package for numerical modeling of resin flow through fibrous media, Composites Science and Technology Vol. 60 (2000), P. 857
DOI: 10.1016/s0266-3538(99)00189-x
Google Scholar
[8]
X.L. Liu, W. Hillier, Heat transfer and cure analysis for the pultrusion of a fiberglass-vinyl ester I beam, Composite Structures Vol. 47 (1999), P. 581
DOI: 10.1016/s0263-8223(00)00029-5
Google Scholar
[9]
J.H. Li, S.C. Joshi, Y.C. Lam, Curing optimization for pultruded composite sections, Composites Science and Technology Vol. 62 (2002), P. 457
DOI: 10.1016/s0266-3538(02)00018-0
Google Scholar
[10]
U. Kesgin, Genetic algorithm and artificial neural network for engine optimization of efficiency and NOx emission, Fuel Vol. 83 (2004), P. 885
DOI: 10.1016/j.fuel.2003.10.025
Google Scholar
[11]
H. Peng, X. Ling, Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms, Applied Thermal Engineering Vol. 28 (2008), P. 642
DOI: 10.1016/j.applthermaleng.2007.03.032
Google Scholar
[12]
T. Morimoto, Y. Ouchi, M. Shimizu, M.S. Baloch, Dynamic optimization of watering Satsuma mandarin using neural networks and genetic algorithms, Agricultural Water Management Vol. 93 (2007), P. 1
DOI: 10.1016/j.agwat.2007.06.013
Google Scholar
[13]
K. Deb, A. Pratap, T. Meyarivan, Constrained test problems for multi-objective evolutionary optimization, First international conference on evolutionary multi-criterion optimization, Berlin (2001), P. 284
DOI: 10.1007/3-540-44719-9_20
Google Scholar
[14]
J.L. Martin, A. Cadenato, J.M. Salla, Comparative studies on the non-isothermal DSC curing kinetics of an unsaturated polyester resin using free radicals and empirical models, Thermochimica Acta Vol. 306 (1997), P. 115
DOI: 10.1016/s0040-6031(97)00311-0
Google Scholar
[15]
L.H. Liu, H. Zhang, Temperature-independent FBG pressure sensor with high sensitivity, Optical Fiber Technology Vol. 13 (2007), P. 78
DOI: 10.1016/j.yofte.2006.09.001
Google Scholar
[16]
Y. Zhao, C.B. Yu, Y.B. Liao, Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement, Optics & Laser Technology Vol. 36 (2004), P. 39
DOI: 10.1016/s0030-3992(03)00129-4
Google Scholar
[17]
T. Liu, H.B. Chang, T.Y. Hsu, X.Y. Ruan, Prediction of the flow stress of high-speed steel during hot deformantion using a BP artificial neural network, Journal of Materials Processing Technology Vol. 103 (2000), P. 200
DOI: 10.1016/s0924-0136(99)00444-6
Google Scholar