Surface Modification of PEOT/PBT Membrane with Silk Fibroin Anchoring and its Potential Application in Artificial Salivary Gland Construct

Article Preview

Abstract:

We reported the preparation of surface modified poly (ethylene oxide terephthalate) - poly (butylene terephthalate) membrane by the method of silk fibroin anchoring, namely SF/(PEOT/PBT). Its surface properties were characterized by contact angles and XPS and the biocompatibility of the composite membrane was further evaluated by human salivary epithelial cells (HSG cells) growth in vitro. Results revealed that SF/(PEOT/PBT) possessed the low water contact angle (48.0±3.0°) and immobilized a great amount of fibroin (fibroin surface coverage: 26.39 wt%), which attributed to the formation of polar groups such as hydrosulfide group, sulfonic group, carboxyl and carbonyl ones in the process of SO2 plasma treatment. HSG cells growth in vitro indicated that the silk fibroin anchoring could significantly enhance the biocompatibility of PEOT/PBT membrane, which suggested the potential application of fibroin anchoring PEOT/PBT for clinical HSG cells transplantation in the artificial salivary gland construct.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

52-59

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sugihara, Y. Yoshimura: Inter. J. Oral Maxillofac. Surg. Vol. 17 (1988), p.71

Google Scholar

[2] L. Sabrina, S. Margherita, L. Dario Domenico: Lab. Investig. Vol. 92 (2012), p.615

Google Scholar

[3] J. Meredith, Y. Eugene, K. John. Expert Rev. Anticancer Ther. Vol. 12 (2012), p.359

Google Scholar

[4] S. L. Wang, E. Cukierman, W. D. Swaim, K. M. Yamada, B. J. Baum: Biomaterials Vol. 20 (1999), p.1043

Google Scholar

[5] A.O. Lobo, F.R. Marciano, S.C. Ramos, M.M. Machado, E.J. Corat, M.A.F. Corat: Mater. Sci. Eng. C Vol. 31 (2011), p.1505

DOI: 10.1016/j.msec.2011.06.007

Google Scholar

[6] L. Moroni, R. Licht, J. Boer, J. R. Wijn, C. A. Blitterswijk: Biomaterials Vol.27 (2006), p.4911

Google Scholar

[7] R. F. She, J. Deng, W. L. Huang, Z. J. Dong, B. Liu: Chin. J. Tissue Eng. Res. Vol. 16 (2012), p.455

Google Scholar

[8] D. G. Harkin, K. A. George, P. W. Madden, I. R. Schwab, D. W. Hutmacher, T. V. Chirila: Biomaterials Vol. 32 (2011), p.2445

DOI: 10.1016/j.biomaterials.2010.12.041

Google Scholar

[9] A. S. Gobin, V. E. Froude, A. B. Mathur: J. Biomed. Mater. Res. A Vol. 74 (2005), p.465

Google Scholar

[10] C. C. Hou, S. J. Tao, Y. Zhu, S. Xu: J. Text. Res. Vol. 33 (2012), p.27

Google Scholar

[11] K. Y. Cai, K. D. Yao, Y. L. Cui, Z. M. Yang, X. Q. Li, H. q. Xie, T. W. Qing, L. B. Gao: Biomaterials Vol. 23 (2002), p.1603

Google Scholar

[12] X. F. Wang, B. Ding, J. Y. Yu, M. R. Wang: Nano today Vol. 6 (2011), p.510

Google Scholar

[13] Z. Ding, J. Chen, S. Gao, J. Chang, J. Zhang, E. T. Kang: Biomaterials Vol. 25 (2004), p.1059

Google Scholar

[14] S. Pavlica, A. Piscioneri, F. Peinemann, M. Keller, J. Milosevic, A. Staeudte, A. Heilmann, M. Schulz-Siegmund, S. Laera, P. Favia, L. De Bartolo, A. Bader: Biomaterials Vol. 30 (2009), p.6514

DOI: 10.1016/j.biomaterials.2009.08.024

Google Scholar

[15] A. E. Ghalbzouri, E. N. Lamme, C. Blitterswijk, J. Koopmanc, M. Ponec: Biomaterials Vol. 25 (2004), p.2987

Google Scholar

[16] J. Malda, T.B.F. Woodfield, F. van de Vloodt, C. Wilson, D.E. Martens, J. Tramper, C.A. van Blitterswijk, J. Riesle: Biomaterials Vol. 26 (2005), p.63

DOI: 10.1016/j.biomaterials.2004.02.046

Google Scholar

[17] K. Inuvye, M. Shigemichi, N. Kewe, M. Tswkada: J. Biochem. Biophys. Methods. Vol (37)1998, p.59

Google Scholar