[1]
M. R. Garey, D. S. Johnson, and R. Sethi, The complexity of flowshop and jobshop scheduling, Mathematics of Operations Research. 1 (1976) 117-129.
DOI: 10.1287/moor.1.2.117
Google Scholar
[2]
C. Akkan, S. Karabati, The two-machine flowshop total completion time problem: Improved lower bounds and a branch-and-bound algorithm, European Journal of Operational Research. 159 (2004) 420-429.
DOI: 10.1016/s0377-2217(03)00415-6
Google Scholar
[3]
T. Lorigeon, A dynamic programming algorithm for scheduling jobs in a two-machine open shop with an availability constraint, Journal of the Operational Research Society. 53 (2002) 1239-1246.
DOI: 10.1057/palgrave.jors.2601421
Google Scholar
[4]
A. Caumond, P. Lacomme, N. Tchernev, A memetic algorithm for the job-shop with time-lags, Computers & Operations Research. 35 (2008) 2331-2356.
DOI: 10.1016/j.cor.2006.11.007
Google Scholar
[5]
W. Q. Huang, A. H. Yin, An improved shifting bottleneck procedure for the job shop scheduling problem, Computers & Operations Research. 31 (2004) 2093-2110.
DOI: 10.1016/s0305-0548(03)00243-0
Google Scholar
[6]
C. Y. Zhang, P. G. Li, Z. L. Guan, Y. Q. Rao, A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem, Computers & Operations Research. 34 (2007) 3229-3242.
DOI: 10.1016/j.cor.2005.12.002
Google Scholar
[7]
A. Udomsakdigool, V. Kachitvichyanukul, Multiple colony ant algorithm for job-shop scheduling problem, International Journal of Production Research. 46 (2008) 4155-4175.
DOI: 10.1080/00207540600990432
Google Scholar
[8]
J. T. Tsai, T. K. Liu, W. H. Ho, J. H. Chou, An improved genetic algorithm for job-shop scheduling problems using Taguchi-based crossover, International Journal of Advanced Manufacture Technology. 38 (2008) 987-994.
DOI: 10.1007/s00170-007-1142-5
Google Scholar
[9]
G. C. Luh, C. H. Chueh, A multi-modal immune algorithm for the job shop scheduling problem, Information Sciences. 179 (2009) 1516-1532.
DOI: 10.1016/j.ins.2008.11.029
Google Scholar
[10]
D. Y. Sha, C. Y. Hsu, A hybrid particle swarm optimization for job shop scheduling problem, Computers & Industrial Engineering. 51 (2006) 791-808.
DOI: 10.1016/j.cie.2006.09.002
Google Scholar
[11]
P. Moscato, M. G. Norman, A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems, Parallel Computing and Transputer Applications. (1992) 177-186.
Google Scholar
[12]
Yang, J. H., Sun, L., Lee, H. P., Qian, Y., Liang, Y. C, Clonal selection based memetic algorithm for job shop scheduling problems, Journal of Bionic Engineering. 5 (2008) 111-119.
DOI: 10.1016/s1672-6529(08)60014-1
Google Scholar
[13]
A. Caumond, P. Lacomme, N. Tchernev, A memetic algorithm for the job-shop with time-lags, Computers & Operations Research. 35 (2008) 2331-2356.
DOI: 10.1016/j.cor.2006.11.007
Google Scholar
[14]
S. M. K. Hasan, R. Sarker, D. Essam, D. Cornforth, Memetic algorithm for solving job-shop scheduling problems, Memetic Computing. 1 (2009) 69-83.
DOI: 10.1007/s12293-008-0004-5
Google Scholar
[15]
G. H. Zhang, L. Gao, Y, Shi, A genetic algorithm and tabu search for multi objective flexible job shop scheduling problems, In: 1st International Conference on computing, control and Industrial Engineering (CCIE 2010), 2010, pp: 251-254.
DOI: 10.1109/ccie.2010.71
Google Scholar
[16]
L. Gao, G. H. Zhang, L. P. Zhang, X. Y. Li, An efficient memetic algorithm for solving the job shop scheduling problem, Computers & Industrial Engineering. 60 (2011) 699-705.
DOI: 10.1016/j.cie.2011.01.003
Google Scholar
[17]
J. E. Beasley, OR-Library: Distributing Test Problems by Electronic Mail, Journal of Operational Research Society, 41 (1990) 1069-1072.
DOI: 10.1057/jors.1990.166
Google Scholar
[18]
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobject genetic algorithm: NSGA-II, IEEE Trans. Evolutionary Computation, 6 (2002) 182-197.
DOI: 10.1109/4235.996017
Google Scholar