Synthesis and Characterization of γ-Alumina-Supported Cobalt and Iron Nanocatalysts

Article Preview

Abstract:

The present work deals with the synthesis of cobalt monometallic and bimetallic Co/Fe nanocatalysts supported on alumina. The nanocatalysts were prepared by a wet impregnation method. The samples were characterized in terms of reducibility, dispersion, metal particle size, textural characteristics and crystallinity. These characteristics were revealed using hydrogen temperature-programmed reduction (TPR), CO-chemisorption, transmission electron microscopy (TEM), X-ray diffraction (XRD) and nitrogen adsorption analysis. H2-TPR analysis of Co/Al2O3 indicated three temperature regions at 507 C (low temperature), 650 C (medium temperature) and 731 C (high temperature) while characteristic peaks of Fe/ Al2O3 appeared at 454 C, 635C and 716 C, respectively. Bimetallic nanocatalysts exhibited different physicochemical properties than those of the monometallic nanocatalysts. The incorporation of iron into cobalt nanocatalysts up to 50% of the total metal loaded enhanced the reducibility, increased the CO and H2 chemisorbed and degree of reduction (DRT) while surface area decreased, further increase in the iron content resulted in a decrease in the crystallinity, increase in the average metal particle size and shift in the reduction towards higher temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-136

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. Dry, Fischer–Tropsch reactions and the environment, Appl. Catal. A.189 (1999) 185-190.

Google Scholar

[2] R. C. Brady III, R. Pettit, Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction, J. Am. Chem. Soc.102 (1980) 6181–6182.

DOI: 10.1021/ja00539a053

Google Scholar

[3] A. Tavasoli, Y. Mortazavi, A. Khodadad, K. Sadagiani, Effects of different loadings of Ru and Re on physico-chemical properties and performance of 15% Co/Al2O3 FTS catalysts, Iranian J. Chem. Chem. Eng. 35 (2005), 9-15

Google Scholar

[4] E.Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal A. 161 (1997) 59-78.

DOI: 10.1016/s0926-860x(97)00186-5

Google Scholar

[5] A.Y. Khodakov, W. Chu and P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 5 (2007) 1692-1744.

DOI: 10.1021/cr050972v

Google Scholar

[6] P. J. Berge, V, J, V, D. Loosdrecht, S. Barradas and A, M, V, D. Kraan, Oxidation of cobalt based Fischer–Tropsch catalysts as a deactivation mechanism, Catal. Today 58 (2000) 321–334.

DOI: 10.1016/s0920-5861(00)00265-0

Google Scholar

[7] G. Jacobs, T. K. Das, Y. Zhang, J.Li, G. Racoillet and B. H. Davis, Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Appl. Catal. A. 233 (2002) 263–281.

DOI: 10.1016/s0926-860x(02)00195-3

Google Scholar

[8] G. Jacobs, J. A. Chaney, P. M. Patterson, T. K. Das, and B. H. Davis, Fischer-Tropsch synthesis: Study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS, Appl. Catal. A.264 (2004) 203-212.

DOI: 10.1016/j.apcata.2003.12.049

Google Scholar

[9] A.J. Kock, H.M. Fortuin, J.W. Geus, The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres, J. Catal. 96 (1985) 261–275.

DOI: 10.1016/0021-9517(85)90379-3

Google Scholar

[10] N. Lohitharn, J.G. Goodwin, E. Lotero, Fe-based Fischer-Tropsch synthesis catalysts containing carbide-forming transition metal promoters, J. Catal. 255 (2008) 104–113.

DOI: 10.1016/j.jcat.2008.01.026

Google Scholar

[11] D.J. Duvenhage, N.J. Coville, Fe:Co/TiO2 bimetallic catalysts for the Fischer- Tropsch reaction I. Characterization and reactor studies: Appl. Catal. A.153 (1997) 43–67.

DOI: 10.1016/s0926-860x(96)00326-2

Google Scholar

[12] R. M. M.Abbaslou, A. Tavasoli, A. K. Dalai, Effect of pre-treatment on physico-chemical properties and stability of carbon nanotubes supported iron Fischer–Tropsch catalysts, Appl. Catal. A. 355 (2009) 33–41.

DOI: 10.1016/j.apcata.2008.11.023

Google Scholar

[13] V.A. de la Peña O'Shea, N.N. Menéndez, J.D. Tornero, J.L.G. Fierro, Unusually high selectivity to C2+ alcohols on bimetallic CoFe catalysts during CO hydrogenation, Catal. Lett. 88 (2003) 123–128.

Google Scholar

[14] V.A. de la Peña O'Shea, M.C. Álvarez-Galvána, J.M. Campos-Martín, J.L.G. Fierro, Fischer–Tropsch synthesis on mono-and bimetallic Co and Fe catalysts in fixed bed and slurry reactors: Appl. Catal. A. 326 (2007) 65–73.

DOI: 10.1016/j.apcata.2007.03.037

Google Scholar

[15] F. Tihay, G. Pourroy, M. Richard-Plouet, A.C. Roger, A. Kiennemann, Effect of Fischer–Tropsch synthesis on the microstructure of Fe–Co-based metal/spinel composite materials, Appl. Catal. A. 206 (2001) 29–42.

DOI: 10.1016/s0926-860x(00)00595-0

Google Scholar

[16] P.T. Tanev, T.J. Pinnavaia, Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties, Chem. Mat. 8 (1996) 2068–2079.

DOI: 10.1021/cm950549a

Google Scholar