Study of Heat Transfer Parameters in the Laminar Cooling Process for Hot-Rolled Strips

Article Preview

Abstract:

The laminar cooling process for the hot-rolled strip is very complex, and the identification of k related to the heat transfer is critical to improve the mathematic precision. So a study of heat transfer parameters is carried in the paper, and the proposed approach is based on the hybrid multi-intelligence technology, where the RBF neural networks, CBR have been used to obtain the parameter estimates. A number of tests using industrial data have been conducted where desired numerical results have been obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

154-159

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. P. Guan, H. X. Li and S. K. Tso:Multivariable fuzzy supervisory control for the laminar cooling process of hot rolled slab, IEEE Trans. on control technology, Vol. 9(2) (2001), pp.348-356.

DOI: 10.1109/87.911386

Google Scholar

[2] P. M. Auman, D. K. Griffiths, and D. R. Hill: Hot strip mill run-out table temperature control, Iron and steel engineer, Vol. 44(9) (1967), pp.174-179.

Google Scholar

[3] T. Y. Chai, X. B. Wang: Application of RBF neural networks in control system of the slab accelerating cooling process, Acta Automatica Sinica. Vol. 26(2) (2000), pp.219-225.

Google Scholar

[4] M. D. Leitholf, J. R Dahm: Model Reference Control of ROT Cooling at LTV, AISE Year Book, (1989), pp.255-259.

Google Scholar

[5] G. V. Ditzhuijzen: The controlled cooling of hot rolled strip: A combination of physical modeling, controls problems and practical adoption, IEEE Trans. Automat. Contr., Vol. 38(7)( 1993), pp.1060-1065.

DOI: 10.1109/9.231460

Google Scholar

[6] S. Serajzadeh: Modeling of temperature history and phase transformations during cooling steel, Elsevier Journal of materials processing technology, Vol. 146(2003), pp.312-317.

DOI: 10.1016/j.jmatprotec.2003.11.010

Google Scholar

[7] Pian J, Chai T, Wang H, et al: Hybrid intelligent forecasting method of the laminar cooling process for hot strip, in proceedings of American Control Conference(ACC 07) (2007), p.4866 – 4871.

DOI: 10.1109/acc.2007.4282188

Google Scholar

[8] A. Aamodt and E. Plaza: Case-based reasoning: foundational issues, methodological variations, and system approach, AI communications, Vol. 7(1)( 1994), pp.39-59.

DOI: 10.3233/aic-1994-7104

Google Scholar

[9] S. K. Pal, P. K. De, J. Basak: Unsupervised feature evaluation: a neuro-fuzzy approach, IEEE Transactions on neural networks. Vol. 11(2)( 2000), pp.366-376.

DOI: 10.1109/72.839007

Google Scholar

[10] T. Y. Chai, M. H. Tan and X. Y. Chen, et al : Intelligent Optimization Control for Laminar Cooling, in Proceeding of the 15th IFAC World Congress, Barcelona, Spain, (2002) pp.181-186.

Google Scholar