[1]
P-N. Tan and M. Steinbach, Introduction to Data Mining, p.127–187, [M] (2005).
Google Scholar
[2]
Y. Sun, M. S. Kamel and A. K.C. Wong, Cost-sensitive boosting for classification of imbalanced data, Patter Recognition Society, pp.3358-3378 , (2007).
DOI: 10.1016/j.patcog.2007.04.009
Google Scholar
[3]
H. He and E. A. Garcia, Learning from imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, VOL 21, No. 9, pp.1263-1284, (2009).
DOI: 10.1109/tkde.2008.239
Google Scholar
[4]
S. Visa and A. Ralescu, Issues in Mining imbalanced Data Sets-A Review Paper, Proc. Of MidWest Artificial Intelligence and Cognitive Science Conference, pp.67-73, (2005).
Google Scholar
[5]
G.E.A.P.A. Batista, R. C. Prati and M. C. Monard, A study of the Behavior of several methods for balancing machine learning training data, SIGKDD Explorations Special Issue on Learning from Imbalanced Datasets, vol. 6(1), pp.20-29, (2004).
DOI: 10.1145/1007730.1007735
Google Scholar
[6]
N. Japkowicz and S. Stepen, The class imbalance problem: a systematic study, Intell. Data Anal. J. 6(5), pp.429-450, (2002).
Google Scholar
[7]
G. Weiss and F. Provost, Learning when training data are costly: the effect of class distribution on tree induction, J. Aritif. Intell. Res. 19, pp.315-354 , (2003).
DOI: 10.1613/jair.1199
Google Scholar
[8]
M. V. Joshi, Learning classifier models for predicting rare phenomena, Ph.D. Thesis, University of Minnesota, Twin Cites, MN, USA, (2002).
Google Scholar
[9]
N. Japkowicz and S. Stephen, The class imbalance problem: a systematic study, Intell. Data Anal. J. Vol 6(5), pp.429-450, (2002).
Google Scholar
[10]
N. Japkowicz, Concept-learning in the presence of between-class and within-class imbalance, Proceedings of the Fourteenth Conference of the Canadian Society for Computational Studies of Intelligence, Ottawa, Canada, pp.67-77, June (2001).
DOI: 10.1007/3-540-45153-6_7
Google Scholar
[11]
R. Akbani, S. Kwek and N. Jakowicz, Applying support vector machines to imbalanced datasets, Proceedings of European Conference on Machine Learning, Pisa, Italy, pp.39-50, September (2004).
DOI: 10.1007/978-3-540-30115-8_7
Google Scholar
[12]
B. Raskutti and A. Kowalczyk, Extreme rebalancing for SVMs: a case study, Proceedings of European Conference on Machine Learning, Pisa, Italy, pp.60-69, September (2004).
Google Scholar
[13]
G. Wu and E. Y. Chang, Class-boundary alignment for imbalanced dataset learning, " Proceedings of the ICML, 03 Workshop on Learning from Imbalanced Data Sets, Washington, DC, August (2003).
Google Scholar
[14]
K. Ezawa, M. Singh and S. W. Norton, Learning goal oriented Bayesian networks for telecommunications risk management, in: Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, pp.139-147, (1996).
Google Scholar
[15]
J. Zhang and I. Mani, KNN approach to unbalanced data distributions: a case study involving information extraction, " Proceedings of the ICML, 03 Workshop on learning from Imbalanced Data Sets, Washing, DC,August (2003).
Google Scholar
[16]
X. Liu, J. Wu and Z. Zhou, Exploratory Under Sampling for Class Imbalance Learning, " Proc. Int, L Conf. Data Mining pp.965-969, (2006).
Google Scholar
[17]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic Minority Over-Sampling Technique, J. Artificial Intelligence Research, vol. 16, pp.321-357, (2002).
DOI: 10.1613/jair.953
Google Scholar
[18]
N. V. Chawla, A. Lazarevic, L. o. Hall, and K. W. Bowyer, SMOTEBoost: Improving Prediction of the Minority Class in Boosting, Proc. Seventh European Conf. Principles and Practice of Knowledge Discovery in Databases, pp.107-119, (2003).
DOI: 10.1007/978-3-540-39804-2_12
Google Scholar
[19]
L. Breiman, Bagging Predictors, Machine Learning, Vol 24 (2), pp.123-140, (1996).
Google Scholar
[20]
Breiman, Random Forests, Machine Learning, Vol 45(1), pp.5-32, (2001).
Google Scholar
[21]
Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, Proceedings of the Thirteenth International Conference on Machine Learning, The Mit Press, Cambridge, MA, Morgan Kaufmann, Los Altos, CA, pp.148-156, (1996).
Google Scholar
[22]
R. Agarwal, and M. V. Joshi, PNrule: A new Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection), Technical Report TR 00-01, Department of Computer Science University of Minnesota, USA, (2000).
DOI: 10.1137/1.9781611972719.29
Google Scholar
[23]
C. Elkan, The Foundations of Cost-Sensitive Learning, " Proc. Int, l Joint Conf. Artificial Intelligence, pp.973-978, (2001).
Google Scholar
[24]
K. M. Ting, An Instance-Weighting Method to Induce Cost-Sensitive Trees, IEEE Trans. Knowledge and Data Eng., vol. 14, no. 3, pp.659-665, (2002).
DOI: 10.1109/tkde.2002.1000348
Google Scholar
[25]
W. Fan, S. Stolfo and J. Zhang, AdaCost: Misclassification Cost-sentitive Boosting, Proceedings of the 16th International Conference on Machine Learning, pp.97-105, (1999).
Google Scholar
[26]
J. Wu, H. Xiong and J. Chen, COG: local decomposition for rare class analysis, DMKD, Vol. 20(2), pp.1384-5810, (2010).
DOI: 10.1007/s10618-009-0146-1
Google Scholar