[1]
Russel E.L., Chiang L.H., and Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic Principal component analysis[J], Chemometrics and Intel. Lab. Sysr. 2000, 51: 81-93.
DOI: 10.1016/s0169-7439(00)00058-7
Google Scholar
[2]
Kano, M., Hasebe,S. and Hashimoto, I. A new multivariate statistical process monitoring method using principal component analysis[J], Computers and Chemical Engineering, 2001, 25: 1103-1113.
DOI: 10.1016/s0098-1354(01)00683-4
Google Scholar
[3]
Gertler,J., Li,W., Huang.Y., and McAvoy, T.J. Isolation enhanced principal component analysis[J], AICHE J., 1999, 45: 323-334.
DOI: 10.1002/aic.690450213
Google Scholar
[4]
Chiang L.H., Russel E.L., and Braatz R.D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J], Chemometrics and Intel. Lab. Syst., 2000, 50: 243-252.
DOI: 10.1016/s0169-7439(99)00061-1
Google Scholar
[5]
Kano, M., Nagao, K., Hasebe, S. etal. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J], Computers and Chemical Engineering, 2002, 26: 161-174.
DOI: 10.1016/s0098-1354(01)00738-4
Google Scholar
[6]
Bi Tian-shu, Ni Yi-xin, Wu Fu-li, Yang Qi-xun. Hybrid Fault Section EstimationSystemWith Radial Baisis Function Neural Network And Fuzzy System. Proceedings of the CSEE. 2005, Vol. 25, No. 14: 12-18.
Google Scholar
[7]
Szu H, etal. Neural network adaptive wavelets neural for signal representation and classification, Optical Engineering , 1992, 31(9): 1907-(1916).
DOI: 10.1117/12.59918
Google Scholar
[8]
Downs, J.J. and Vogel, E.F. A plant-wide industrial process control problem[J]. Computers and chemical Engineering, 1993, 17(3): 245-255.
DOI: 10.1016/0098-1354(93)80018-i
Google Scholar
[9]
McAvoy, T.J. and Ye, N. Base control for the Tennessee Eastman problem [J]. Computers and Chemical Engineering, 1994, 18: 383-413.
DOI: 10.1016/0098-1354(94)88019-0
Google Scholar