A Highly Selective and Sensitive Fluorescent Probe Based on Quinolone Derivative for Hg2+ in Aqueous Solution

Article Preview

Abstract:

A new fluorescent probe, quinoline derivative DPQ bearing a methyl pyrrolidine-1-carbodithioate group, was synthesized and characterized by IR, Tof-MS and NMR. Its fluorescent behaviors toward transition metal ions were investigated. The results indicate that DPQ shows unique selective and high sensitive for Hg2+ in aqueous solution with a broad pH range 4-10. DPQ forms a 1:2 metal-ligand complex with Hg2+ ions with a limit of detection as low as 1.7×10-6 mol/L.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-233

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. P. Desvergne, A. W. Czarnik, Chemosensors of Ion and Molecule Recognition, Harcover, (1997).

Google Scholar

[2] Fluorescent Chemosensors for Ion and Molecule Recognition, A.W. Czarnik, Ed.; American Chemical Society, Washington, DC, (1992).

Google Scholar

[3] A. P. de Silva, H. Q. N. Gunaratne.

Google Scholar

[4] P. Grandjean, P. Weihe, R. F. White and F. Debes, Environ. Res., 1998, 77, 165.

Google Scholar

[5] T. Takeuchi, N. Morikawa, H. Matsumoto and Y. Shiraishi, Acta Neuropathol., 1962, 2, 40.

Google Scholar

[6] M. Harada, Crit. Rev. Toxicol., 1995, 25, 1.

Google Scholar

[7] P. Weilhe edited a special issue of EnVironmental Research devoted to mercury and derivatives as toxic elements. Grandjean, P. Environ. Res. Sect. A 1998, 77, 67-178.

Google Scholar

[8] Yun, Z ; Yue S. Rhodamine-based chemosensor for Hg2+ in aqueous solution with a broad pH range and its application in live cell imaging [J]. Org. Biomol. Chem., 2010, 8, 4143–4147.

DOI: 10.1039/c0ob00013b

Google Scholar

[9] Liu, B.; Tian, H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]. Chem. Commun. 2005, 315.

Google Scholar

[10] Feng, L.; Chen, Z. Screening mercury (II) with selective fluorescent chemosensor [J]. Sensors and Actuators B. 2007, 122, 600.

DOI: 10.1016/j.snb.2006.07.007

Google Scholar

[11] Ou, S.; Lin, Z.; Duan, C.; Zhang, H.; Bai, Z. A sugar-quinoline fluorescent chemosensor for selective detection of Hg2+ ion in natural water [J]. Chem. Commun. 2006, 4392 Demchenko, A. P. Introduction to Fluorescence Sensing; Springer: New York, (2009).

DOI: 10.1039/b607287a

Google Scholar

[12] Cao, H.; Diaz, D. I.; DiCesare, N.; Lakowicz, J. R.; Heagy, M. D. Org. Lett. 2002, 4, 1503–1505. Valeur, B. Molecular Fluorescence Principles and Applications; Wiley-VCH: NewYork, (2002).

DOI: 10.1021/ol025723x

Google Scholar

[13] Cao, H.; Xiong, Y.; Wang, T.; Squier, T. C.; Mayer, M. U. J. Am. Chem. Soc. 2007, 129, 8672–8673.

Google Scholar

[14] Abass, M. Heterocycles 2005, 65, 901.

Google Scholar

[15] Michael, J. P. Nat. Prod. Rep. 1997, 14, 605.

Google Scholar

[16] Michael, J. P. Nat. Prod. Rep. 2002, 19, 742.

Google Scholar

[17] Newkome, G. R.; Paudler, W. W. Contemporary Heterocyclic Chemistry; Wiley, New York, 1982; pp.199-231.

Google Scholar

[18] Muchowski, J. M.; Maddox, M. L. Can. J. Chem. 2004, 82, 461.

Google Scholar

[19] Maguire, M. P.; Sheets, K. R.; McVety, K.; Spada, A. P.; Zilberstein, A. J. Med. Chem. 1994, 37, 2129.

Google Scholar