Melting Temperature of Al2O3 under Pressure

Article Preview

Abstract:

The melting temperature-pressure phase diagram [Tm(P)-P] for corundum (Al2O3) is predicted through the Clapeyron equation where the pressure-dependent volume difference is modeled by introducing the effect of surface stress induced pressure. Al2O3 has been employed to test the reliability of the model, because of its important role. Al2O3 has been extensively investigated because of its widely ranging industrial applications. This includes applications as a refractory material both of high hardness and stability up to high temperatures, as a support matrix in catalysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

745-748

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Y. Shen, N. Sata, M. L. Rivers and S. R. Sutton: Appl. Phys. Lett Vol. 78 (2001), p.3208.

Google Scholar

[2] R. H. French, J. Am. Ceram: Soc Vol. 73 (1990), p.477.

Google Scholar

[3] B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johansson, and B. I. Lundqvist: Phys. Rep Vol. 59 (1999), p.12777.

Google Scholar

[4] F. H. Streitz , J. W. Mintmire: Phys. Rev. B Vol. 60 (1999), p.773.

Google Scholar

[5] A. P. M. Catti, Acta Crystallogr and Sect. B: Struct. Sci Vol. 54 (1998), p.741.

Google Scholar

[6] L. Q. Lobo, A. G. M. Ferrera: J. Chem. Thermodyn Vol. 33 (2001), p.1597.

Google Scholar

[7] Q. Jiang, L. H. Liang and D. S. Zhao: J. Phys. Chem. B Vol. 105 (2001), p.6275.

Google Scholar

[8] A. R. Regel', V. M. Glazov: Semiconductor Vol. 29 (1995), p.405.

Google Scholar

[9] J. D. Hoffman: J. Chem. Phys Vol. 29 (1958), p.1192.

Google Scholar

[10] Z. W. Wang, H. H. Mao and S. K. Saxena: J. Alloy. Compd Vol. 299 (2000), p.287.

Google Scholar

[11] Z. W. Wang, P. Lazor and S. K. Saxena: Mater. Lett Vol. 49 (2001), p.287.

Google Scholar

[12] A. Zerr, R. Boehler: Nature (London) Vol. 371 (1994), p.506.

Google Scholar

[13] C. C. Yang, J. C. Li and Q. Jiang: Chem. Phys. Lett Vol. 372 (2003), p.156.

Google Scholar

[14] Q. Jiang, H. X. Shi and M. Zhao: J. Chem. Phys Vol. 111 (1999), p.2176.

Google Scholar

[15] S. Ansell, S. Krishnan and J. K. R. Weber: Phy. Rev. Lett Vol. 78 (1997), p.464.

Google Scholar

[16] R. C. Weast, CRC Handbook of Chemistry and Physics, 69th ed., CRC Press, Inc., Boca Raton, Florida, 1988-1989, pp. D-46; pp. D-47; pp. F-13; pp. B-68; pp. B-98.

DOI: 10.1002/jctb.280500215

Google Scholar

[17] A. R. Regel', V. M. Glazov: Semiconductor Vol. 29 (1995), p.405.

Google Scholar

[18] N. A. Dubrovinskaya, L. S. Dubrovinsky, S. K. Saxena and Geo. Et Cosm: Acta Vol. 61 (1997).

Google Scholar

[10] The necessary parameters in Eq. (6) are as follows: Tm = 2327 K.

Google Scholar

[15] Hm = 21. 76 KJ g-atom-1.

Google Scholar

[16] Sm=Hm/Tm= 9. 35 Jg-atom-1K-1, Sm=Sel+Spos+Svib, Sel is negligibly small, and Spos=-R[xAln(xA)+ xVln(xV)], where xA= 1/(1+ΔVm) and xV=ΔVm /(1+ΔVm) are the molar fractions of the host material and vacancies, respectively.

Google Scholar

[17] and ΔVm is the volume difference between the crystal and corresponding fluid at Tm. As result, Svib= Sm-Spos or Svib » Sm+ R[xAln(xA)+ xVln(xV)].

Google Scholar

[23] ΔVm=(VL-VS)/VS, Svib=5. 6 Jg-atom-1K-1, h = 0. 191 nm.

Google Scholar

[15] g = 0. 690 Jm-2 , kS =3. 86×10-12 Pa-1 is determined by k =1/B with B =289. 55 GPa being the bulk modulus.

Google Scholar

[18] VS = 5. 14 cm3 g-atom.

Google Scholar

[18] VL = 6. 16 cm3g-atom-1.

Google Scholar

[15] kL =57. 9×10-12 Pa-1 as a first-order approximation under higher pressure, we assume kL » 15kS.

Google Scholar

[13] f is calculated through Eq. (2) and f = 4. 5 Jm-2. Fig. 1.

Google Scholar