DEM Simulations on the Heat Conduction in a Particle Mixer

Article Preview

Abstract:

Understanding the heat transfer among particles with uneven temperature distribution is a key to powder processing. In this work, the discrete element method (DEM) is used to optimize the interior structure of a particle mixer with multiple baffles to achieve better heat transfer between two particulate materials. The simulation results show that optimal values exist for the number of baffles and their widths, slope angles and spacing to enhance heat transfer. The results are helpful to the design of a variety of process such as the ultra-fast pyrolysis in “coal topping”.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

908-913

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Mullin, Granular Materials: Science, Vol. 295 (2002), p.1851.

Google Scholar

[2] J.H. Li, J. Ouyang, Sh.Q. Gao, W. Ge, N. Yang and W.L. Song: Multi-Scale Simulation of Particle-Fluid Complex Systems (Science Press, Beijing, 2005).

Google Scholar

[3] Y. Tsuji, T. Tanaka and T. Ishida: Powder Technology, Vol. 71 (1992) , p.239.

Google Scholar

[4] Y. Tsuji, T. Kawaguchi and T. Tanaka: Powder Technology, Vol. 77 (1993), p.79.

Google Scholar

[5] B.H. Xu and A.B. Yu: Chemical Engineering Science , Vol. 52 (1997), p.2785.

Google Scholar

[6] P.W. Cleary: International Journal of Mineral Processing, Vol. 63 (2001), p.79.

Google Scholar

[7] A.D. Rosato and D.L. Blackmore: IUTAM Symposium on Segregation in Granular Flows (Kluwer Acadamic publishers, Dordrecht, Netherlands, 2003).

Google Scholar

[8] A.B. Yu: Engineering Computation, Vol. 21 (2004), p.205.

Google Scholar

[9] J.G. Wang, X.S. Lu, J.X. Yao, W.G. Lin and L.J. Cui: Industrial & Engineering Chemistry Research, Vol. 44 (2005), p.463.

Google Scholar

[10] V.V.R. Natarajan and M.L. Hun: International Journal of Heat and Mass Transfer, Vol. 41 (1998), p. (1929).

Google Scholar

[11] E. E. Michaelides: International Journal of Heat and Mass Transfer, Vol. 29 (1986), p.265.

Google Scholar

[12] J.R. Ferron and D.K. Singh: AIChE Journal, Vol. 37 (1991) , p.747.

Google Scholar

[13] C.A. Cook, V.A. Cundy: International Journal of Heat and Mass Transfer, Vol. 38 (1995), p.419.

Google Scholar

[14] B. Chaudhuri, F.J. Muzzio and M.S. Tomassone: Chemical Engineering Science, Vol. 61 (2006), p.6348.

Google Scholar

[15] P.A. Cundall and O.D.L. Strack: Geotechnique, Vol. 29 (1979), p.47.

Google Scholar

[16] P.A. Cundall: The Measurement and Analysis of Acceleration in Rock Slopes (Ph.D. Dissertation, Imperial College of Science and Technology, London, 1971).

Google Scholar

[17] Y. C. Zhou, B. D. Wright, R. Y. Yang, B. H. Xu and A. B. Yu: Physica A: Statistical Mechanics and its Applications, Vol. 269 (1999), p.536.

Google Scholar

[18] J.Y. Zhang, Z.G. Hu, W. Ge, Y.J. Zhang, T.H. Li and J.H. Li: Industrial & Engineering Chemistry Research, Vol. 43 (2004), p.5521.

Google Scholar

[19] S. Yagi and D. Kunii: AIChE Journal, Vol. 3 (1957), p.373.

Google Scholar

[20] G. K. Batchelor and R. W. O'Brien: Proceedings of the Royal Society of London, Vol. 355 (1977), p.313.

Google Scholar

[21] J.Y. Zhang, J.X. Lu, L.J. Cui, W.L. Song, W.G. Lin and W. Ge: The third Asian Particle Technology Symposium (Beijing, China, 3rd-5rd September, 2007).

Google Scholar