The Effect of Growth, Migration and Bacterial Cellulose Synthesis of Gluconacetobacter xylinus in Presence of Direct Current Electric Field Condition

Article Preview

Abstract:

In this study, the movement and orientation of bacteria cells were controlled by direct current(DC) electric fields, result in altering alignment of bacterial cellulose nanofiber and further changing the 3-dimensional network structure of bacterial cellulose. A modified swarm plate assay was performed to investigate the migration of Gluconacetobacter xylinus cells which exposed in DC electric field. It suggested that the cells moved toward to negative pole and with the increasement of the electric field strength the velocity will also increase. The SEM analysis demonstrated that the cellulose fiber bundles which synthesized at 1V/cm have lager diameter and a trend toward one direction. Meanwhile the growth state of G.xylinus in the presence of DC electric field was also being observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1108-1113

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wan Y Z, Hong L, Jia S R, etc.: Compos Sci Technol, (2006) 66:1825-1832.

Google Scholar

[2] Bodin, A., H. Backdahl, H. Fink, L. Gustafsson,B. Risberg, and P. Gatenholm.: Biotechnol. Bioeng ,(2007) 97:425–434.

DOI: 10.1002/bit.21314

Google Scholar

[3] Yoshiaki Y, Shin K, Kenji T.: Proteins, (2006)64:1069-1077.

Google Scholar

[4] Hoenich N.: BioResources, (2006)1:270–280.

Google Scholar

[5] Czaja WK, Young DJ, Kawecki M, Browm RM.: Biomacromolecules, (2007)8:1–12.

Google Scholar

[6] Gatenholm P, Klemm D.: MRS Bull, (2010)35:208–213.

Google Scholar

[7] Fontana JD, Desouza AM, Fontana CK, Torriani IL, Moreschi JC,Gallotti BJ, Desouza SJ, Narcisco GP, Bichara JA, Farah LF.: Appl Biochem Biotechnol, (1990)24–25:253–264.

DOI: 10.1007/bf02920250

Google Scholar

[8] Czaja W, Krystynowicz A, Bielecki S, Brown RM.: Biomaterials, (2006)27:145–151.

Google Scholar

[9] Gascoyne, P. R. C., J. V. Vykoukal, J. A. Schwartz, T. J.Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker, and C. Andrews.: Lab Chip (2004)4:299–309.

DOI: 10.1039/b404130e

Google Scholar

[10] Pohl, H. A.: Appl. Phys, (1951)22:869–871.

Google Scholar

[11] Shafiee, H., J. L. Caldwell, M. B. Sano, and R. V.: Biomed. Microdev , (2009)11:997–1006.

Google Scholar

[12] Sano, M. B., Caldwell, J. L., Davalos, R. V.: Biosens.Bioelectron, (2011)1:13-20.

Google Scholar

[13] Jia S., Ou H., Chen G., Choi D.B., Cho K.A., Okabe M., Cha W.S.: Biotechnol. Bioprocess. Eng, (2004)9:166-170.

DOI: 10.1007/bf02942287

Google Scholar

[14] Jia S, Ou H, Chen G, Choi DB, Cho KA, Okabe M, Cha WS.: Biotechnol.Bioproc, (2004)E. 166-170.

Google Scholar

[15] Tang W, Jia S, Jia Y, Yang H.: Microb. Biot,(2010)26:125-131.

Google Scholar

[16] Saharman Gea, Christopher T. Reynolds, Nima Roohpour,etc.: Bioresource Technology, (2011)19:9105-9110.

Google Scholar

[17] Czaja, W., Romanovicz, D., & Brown, R. M. Jr.: Cellulose, (2004)11:403–411.

Google Scholar

[18] Brown, R. M., J. H. M. Willison, and C. L. Richardson.: Proc. Natl Acad. Sci. USA, (1976)73:4565–4569.

Google Scholar

[19] Adler J.: Science, (1966)153:708-716.

Google Scholar