Advances in Graphene for Adsorption of Heavy Metals in Wastewater

Article Preview

Abstract:

Graphene for its unique physical structure, excellent mechanical, electrical and physical properties has been widely applied in nanoelectronics, microelectronics, energy storage material, composite materials and so on. In recent years, many researchers found graphene have outstanding adsorption capacity of contaminants in aqueous solution due to its high specific surface area. This paper summarized the graphene, graphene oxide and functionalized graphene removing various heavy metals in waste water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2121-2124

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.X. Gu, Y. Han, J.J. Chen, and J.R. Chen: Adv. Mat. Res. Vol. 356-360 (2012), p.349

Google Scholar

[2] M.M. Rao, D.K. Ramana, K. Seshaiah, M.C. Wang, and S.W.C. Chien: J. Hazard. Mater. Vol. 166 (2009), p.1006

Google Scholar

[3] Y.J. Han, D.G. Stucky, and A. Butler: J. Am. Chem. Soc. Vol. 121 (1999), p.9897

Google Scholar

[4] S. Chiarle, M. Ratto, and M. Rovatti: Water Res. Vol. 34 (2000), p.2971

Google Scholar

[5] N.S. Kumar, M. Suguna, M.V. Subbaiah, A.S. Reddy, N.P. Kumar, and A. Krishnaiah: Ind. Eng. Chem. Res. Vol. 49 (2010), p.9238

DOI: 10.1021/ie901171b

Google Scholar

[6] V.K. Gupta, D. Mohan, S. Sharma, and M. Sharma: Sep. Sci. Technol. Vol. 35 (2000), p. (2097)

Google Scholar

[7] S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al.: Nature Vol. 442 (2006), p.282

Google Scholar

[8] A.A. Balandin, S. Ghosh, W.Z. Bao, et al.: Nano Lett. Vol. 8 (2008), p.902

Google Scholar

[9] C. Lee, X. Wei, J.W. Kysar, and J. Hone: Science Vol. 321 (2008), p.385

Google Scholar

[10] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj: Angew. Chem. Int. Ed. Vol. 48 (2009), p.7752

Google Scholar

[11] S. Latil, L. Henrard: Phys. Rev. Lett. Vol. 97 (2006), p.036803

Google Scholar

[12] P.K. Ang, W. Chen, A.T.S. Wee, and K.P. Loh: J. Am. Chem. Soc. Vol. 130 (2008), p.14392

Google Scholar

[13] X. Wang, L. Zhi, and K. Mullen: Nano Lett. Vol. 8 (2008), p.323

Google Scholar

[14] X.M Sun, Z. Liu, K. Welsher, et al.: Nano Res. Vol. 1 (2008), p.203

Google Scholar

[15] Y.B. Tang, C.S. Lee, Z.H. Chen, et al.: Nano Lett. Vol. 9 (2009), p.1374

Google Scholar

[16] M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff: Nano Lett. Vol. 8 (2008), p.3498

Google Scholar

[17] X.Y. Zhang, X.Y. Yang, Y.F. Ma, Y.Huang and Y.S. Chen: J. Nanosci. Nanotechnol., Vol. 10 (2010), p.2984

Google Scholar

[18] K.S. Kim, Y. Zhao, H. Jang, et al.: Nature Vol. 457 (2009), p.706

Google Scholar

[19] Z.H. Huang, X.Y. Zheng, W. Lv, M. Wang, Q.H. Yang, and F.Y. Kang: Langmuir Vol. 27 (2011), p.7558

Google Scholar

[20] G.X. Zhao, X.M. Ren, X. Gao, et al.: Dalton Trans. Vol. 40 (2011), p.10945

Google Scholar

[21] S.T. Yang, Y.L. Chang, H.F. Wang, et al.: J. Colloid Interf. Sci. Vol. 351 (2010), p.122

Google Scholar

[22] G.X. Zhao, J.X. Li, X.M. Ren, C.L. Chen, and X.K. Wang: Environ. Sci. Technol. Vol. 45 (2011), p.10454

Google Scholar

[23] L.Y. Hao, H.J. Song, L.C. Zhang, X.Y. Wan, Y.R. Tang, and Y. Lv: J. Colloid Interf. Sci. Vol. 369 (2012), p.381

Google Scholar

[24] Y.Q. He, N.N. Zhang, and X.D. Wang: Chinese Chem. Lett. Vol. 22 (2011), p.859

Google Scholar

[25] N.N. Zhang, H.X. Qiu, Y.M. Si, W. Wang, and J.P. Gao: Carbon Vol. 49 (2011), p.827

Google Scholar

[26] C.J. Madadrang, H.Y. Kim, G.H. Gao, et al.: ACS Appl. Mater. Interfaces 2012, dx.doi.org/.

DOI: 10.1021/am201645g

Google Scholar

[27] V. Chandra, K.S. Kim: Chem. Commun. Vol. 47 (2011), p.3942

Google Scholar

[28] Z.Q. Zhao, X. Chen, Q.Yang, J.H. Liu, and X.J. Huang: Chem. Commun. Vol. 48 (2012), p.2180

Google Scholar

[29] H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, and S.B. Kim: Nanoscale Vol. 3 (2011), p.3583

Google Scholar

[30] M.C. Liu, C.L. Chen, J. Hu, X.L. Wu, and X.K. Wang: J. Phys. Chem. C Vol. 115 (2011), p.25234

Google Scholar

[31] H.Y. Koo, H.J. Lee, H.A. Go, et al.: Chem. Eur. J. Vol.17 (2011), p.1214

Google Scholar

[32] V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, and K.S. Kim: ACS Nano Vol.4 (2010), p.3979

Google Scholar

[33] K. Zhang, V. Dwivedi, C.Y. Chi, and J.S. Wu: J. Hazard. Mater. Vol. 182 (2010), p.162

Google Scholar

[34] X.J. Deng, L.L. Lü, H.W. Li, and F. Luo: J. Hazard. Mater. Vol. 183 (2010), p.923

Google Scholar