Kinetics Analysis and Process Simulation for Sorption-Enhanced Steam Methane Reforming

Article Preview

Abstract:

Hydrogen is an important industrial raw material now and may become the main fuel in the future with increasing attention on the global warm and environment protection. Sorption-enhanced steam methane reforming (SESMR) integrates methane reforming, water-shift and CO2 separating in one step and hydrogen concentration is high up to 98%. This paper reviews recent studies on the reaction kinetics about SESMR process. Microkinetics is believed the more promising and reliable than that of intrinsic kinetics. It is appropriate approach to promote carbonation rate through adding materials with a low melting point to the sorbent.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2633-2637

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hydrogen, Fuel Cells & Infrastructure Technologies Program, Multi-Year Research, Development and Demonstration Plan, U.S. Department of Energy, 2005 www.eere.energy.gov/hydrogenandfuelcells/mypp/

Google Scholar

[2] Ochoa-Fernández, E., CO2 Acceptors for Sorption-Enhanced Steam Methane Reforming, thesis, Norwegian University of Science and Technology, Norway, (2007)

Google Scholar

[3] Hazzim F. Abbas, W.M.A. Wan Daud, 2010, 35, 1160– 1190

Google Scholar

[4] Abanades J C, Rubin E S, Anthony EJ, Ind. Eng. Chem. Res., 2004, 43, 3462-3466

Google Scholar

[5] Anand, M., Sircar, S., and Carvill, B.T., USP 6303092 B1, (2001)

Google Scholar

[6] Akers, W W, D P, Camp, AIChE J, 1955, 1, 471

Google Scholar

[7] Schnell, C. R. Journal of the Chemical Society, B, 1970, 158-163

Google Scholar

[8] Xu J, Froment GF. AIChE J. 1989, 35, 88–96.

Google Scholar

[9] Xu J, Froment GF.. AIChE J. 1989, 35, 97–103

Google Scholar

[10] Hou, K., R. Hughes, Chem. Eng. J. 2001, 82, 311–328

Google Scholar

[11] Hoang, D.L., S.H. Chan, O.L. Ding, Chem. Eng. J. 2005, 112, 1–11

Google Scholar

[12] Yang, W.S., H.W. Xiang, Y.W. Li, Y.H. Sun, Catalysis Today, 2000, 61, 237–242

Google Scholar

[13] Maestri, M., Dionisios G. Vlachos, A. Beretta, et al. AIChE J, 2009, 55, 993-1007

Google Scholar

[14] Avetisov, A.K., J.R. Rostrup-Nielsen, V.L. Kuchaev, et al. Journal of Molecular Catalysis A: Chemical, 2010, 315, 155-162

Google Scholar

[15] Levent, M., G. Budak, A., Fuel Processing Technology, 1998, 55, 251–263

Google Scholar

[16] Sadeghi M. T., M. Molaei, Int. J. Chem. React. Eng. 2008, 6, A6

Google Scholar

[17] Bhatia S. K., Perlmutter D. D., AIChE J. 1983, 29, 79-86

Google Scholar

[18] Sun P., J. R. Grace, C. J. Lim, E. J. Anthony, Chem. Eng. Sci. 2008, 63, 47–56

Google Scholar

[19] Alvarez, D. and J. C. Abanades, Ind. Eng. Chem. Res. 2005, 44, 5608-561

Google Scholar

[20] Yang, Q., Y. S. Lin, Ind. Eng. Chem. Res. 2006, 45, 6302-6310

Google Scholar

[21] Nakagawa, K., Ohashi, T., Journal of the Electrochemical Society, 1998, 145, 1344–1346

Google Scholar

[22] Kang, S.Z., T. Wu, X.Q. Li, J. Mu, Materials Letters, 2010, 64, 1404–1406

Google Scholar

[23] Olivares-Marín, M., T.C. Drage, M. M. Maroto-Valer, International Journal of Greenhouse Gas Control, 2010, 4, 623–629

DOI: 10.1016/j.ijggc.2009.12.015

Google Scholar

[24] Yi, K. B., D. Eriksen, Separation Science and Technology, 2006, 41, 283–296

Google Scholar

[25] Ida, J.I., R.T. Xiong, Y.S. Lin, Separation and Purification Technology, 2004, 36, 41–51

Google Scholar

[26] Jakobsen, J. P., E. Halmøy, Energy Procedia, 2009, 1, 725–732

Google Scholar

[27] Johnsen, K., J. R. Grace, Said S. E. H., et al. Ind. Eng. Chem. Res. 2006, 45, 4133-4144

Google Scholar

[28] Lindborg, H., H. A. Jakobsen, Ind. Eng. Chem. Res. 2009, 48, 1332–1342

Google Scholar

[29] Ding, Y., E. Alpay, Chem. Eng. Sci. 2000, 55, 3929-3940

Google Scholar

[30] Rawadieh, S., V. G. Gomes, International Journal of Hydrogen Energy, 2009, 34, 343–355

Google Scholar