Influence of Sintering Temperature on the Structure of SrFeCoO3-δ Oxide

Article Preview

Abstract:

SrFeCoO3-δ oxides have been synthesized by citrate method and the effect of sintering temperature on the structure of the samples has been analyzed. The experimental results show that the samples sintered at different temperatures are mainly composed of SrFe0.5Co0.5O3 with perovskite structure. The impure phases decrease and the intensity of the diffraction peaks of the SrFe0.5Co0.5O3 perovskite phase increases with the increase of the sintering temperature. High pure SrFe0.5Co0.5O3 perovskite phase can be obtained after sintering at 1000°C and 1100°C. The particle size with irregular morphology increases with the increase of the sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2719-2722

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Sunarso, S. Baumann, J.M. Serra, et al.: J. Membr. Sci. Vol. 320 (2008), p.13.

Google Scholar

[2] E. Justea, A. Julian, G. Etchegoyena, et al.: J. Membr. Sci. Vol. 319 (2008), p.185.

Google Scholar

[3] V. Ekaterina, V. Tsipis, C. Joao, et al.: Electrochem. Commun. Vol. 13 (2011), p.685.

Google Scholar

[4] J. Park , J. Zou, H. Yoon, et al.: Int. J. Hydro. Energy Vol. 36 (2011), p.6184.

Google Scholar

[5] J. Kniep, Q.H. Yin, I. Kumakiri, et al.: Solid State Ionics Vol. 180 (2010), p.1633.

Google Scholar

[6] Q.H. Yin, J. Kniep, Y.S. Lin: Chem. Eng. Sci. Vol. 63 (2008), p.5870.

Google Scholar

[7] X.L. Dong, Z.K. Liu, Y.J. He, et al.: J. Membr. Sci. Vol. 331 (2009), p.109.

Google Scholar

[8] X.L. Dong, G.R. Zhang, Z. K. Liu, et al.: J. Membr. Sci. Vol. 340 (2009), p.141.

Google Scholar

[9] C. Zhang, X.F. Chang, X.L. Dong, et al.: J. Membr. Sci. Vol. 320 (2008), p.401.

Google Scholar

[10] C. Zhang, W.Q. Jin, C. Yang, et al.: Catal. Today Vol. 148 (2009), p.298.

Google Scholar

[11] Q. Yang, Y.S. Lin: AIChE J. Vol. 52 (2006), p.1.

Google Scholar

[12] T. Griffin, S.G. Sundkvist, K. Asen, et al.: J. Eng. Gas Turb. Power Vol. 127 (2005), p.81.

Google Scholar

[13] J.S. Engels, F. Beggel, M. Modigell, et al.: J. Membr. Sci. Vol. 359 (2010), p.93.

Google Scholar

[14] J.W. Stevenson, T.R. Armstrong, R.D. Carneim, et al.: J. Electrocheem. Soc. Vol. 143 (1996), p.2722.

Google Scholar

[15] M.H.R. Lankhorst, J.E. Elshof: J. Solid State Chem. Vol. 130 (1997), p.302.

Google Scholar

[16] B.J. Mitchell, J.W. Richardson, C.D. Murphy, et al.: J. Europ. Ceram. Soc. Vol. 22 (2002), p.661.

Google Scholar

[17] B. Ma, N.I. Victory, U. Balachandran: J. Am. Ceram. Soc. Vol. 85 (2002), p.2641.

Google Scholar

[18] I.R. Abothu, W. Jin, R. Wang, et al.: J. Mater. Sci. Vol. 39 (2004), p.707.

Google Scholar

[19] Q.H. Yin, Y.S. Lin: Solid State Ionics Vol. 178 (2007), p.83.

Google Scholar

[20] Z.B. Rui, J.J. Ding, Y.D. Li, et al.: Fuel Vol. 89 (2010), p.1429.

Google Scholar

[21] X.P. Dong, Q. Li, X.H. Huang, et al.: Mater. Sci. Vol. 1 (2011), p.93.

Google Scholar

[22] X.H. Huang, L.Z. Pei, C.G. Fan, et al.: Inorg. Mater. Vol.46 (2010), p.1225.

Google Scholar