Al-Mg Alloy Powders for Hydrogen Storage

Article Preview

Abstract:

To develop hydrogen storage materials is the key to hydrogen storage. Magnesium theoretically stores 7.6 wt.% hydrogen, although it requires heating to above 300°C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still be considered as a potential candidate for hydrogen storage e.g. in stationary applications. Recent advances in Al-Mg alloy powders for hydrogen storage is presented in this paper. The main focus is on preparation of Mg-Al alloy and hydrogen storage properties of Mg-Al alloys. It is pointed the microstructure and components of Nano Mg-Al alloy have a great impact on the hydrogen-storage properties. Electrochemical deposition will be used to prepare the Nano Mg-Al alloy. Research will focuse on the nucleation mechanism and the influence of microstructure and components of the alloy on the hydrogen-storage properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

497-501

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Schlapbach, A. Zuttel: Nature Vol. 414(2001), p.23.

Google Scholar

[2] A. M. Seayad, D. M.Antonelli: Advanced materials, Vol. 16(2004), p.765.

Google Scholar

[3] I. P. Jain, P. Jain, A. Jain: Journal of Alloys and Compounds, Vol. 503 (2010), p.303.

Google Scholar

[4] A. Andreasen, M. B. Sørensen, R. Burkarl, B. Møller, A. M. Molenbroek, A. S. Pedersen, J. W. Andreasen, M. M. Nielsen, T. R: Journal of Alloys and Compounds, Vol. 404-406 (2005), p.323.

DOI: 10.1016/j.jallcom.2005.01.119

Google Scholar

[5] F. J. Liu, S. A. Suda: J. Alloys Compounds Vol. 231(1995), p.742.

Google Scholar

[6] S. Suda: J. Alloys Comps. , Vol. 330 (2002), p.627.

Google Scholar

[7] M. H. Miniz, s. Malkiely, Z. Gavra, Z. Hadari: J. Inorg. Nucl. Chem., Vol. 40 (1978), p.1949.

Google Scholar

[8] M. H. Mintz, Z. Gavra, G. Kimmel: J. Less-Common Mets., Vol. 74 (1980), p.263.

Google Scholar

[9] J. J. Reilly,R. H. Wiswall, C. H. Waide: Final Report GPA Grant R-802579, BNL, Newyork, (1974).

Google Scholar

[10] S. Bouaricha, J. P. Dodelet, D. Guay: J. Alloys Comp., Vol. 297 (2000), p.282.

Google Scholar

[11] M. Bououdina, Z. X. Guo: J.Alloys Comp., Vol. 336 (2002), p.222.

Google Scholar

[12] A. Zaluska, L. Zaluski, J. O. Strom-Olsen: Appl. Phys. A, Vol. 72 (2001), p.157.

Google Scholar

[13] K. J. Bryden, J. Y.Ying: Nanostructured Materials, Vol. 9 (1997), p.485.

Google Scholar

[14] S. S. V. Tatiparti, F. Ebrahimi: Vol. 155 (2008), p. D363.

Google Scholar

[15] D. Chandra, J. J. Reilly, R. Chellappa: JOM, Vol. 58 (2006), p.26.

Google Scholar

[16] J. Huot, G. Liang, S. Boily: Journal of Alloys and Compounds, Vol. 293-295 (1999), p.495.

Google Scholar

[17] S. Bouarlcha, J. P. Dodelet, D.Guay: Journal of Alloys and Compounds, Vol. 297(2000), p.282.

Google Scholar

[18] L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, R. Schulz: Journal of Materials Science, Vol. 31(1996), p.695.

Google Scholar

[19] K. J. Bryden, J. Y. Ying: Nanostructured Materials, Vol. 9 (1997), p.485.

Google Scholar