Enhanced Activity of Intracellular Agarase from a Novel Marine Strain Agarivorans gilvus WH0801

Article Preview

Abstract:

A marine bacterium strain Agarivorans gilvus WH0801 with the efficient agar degradation ability isolated from fresh seaweed samples of Weihai coast was found to be potential in producing agarase. We studied on the optimal medium composition and culture conditions of Agarivorans gilvus WH0801 by statistical methods in shake flasks. First, several more important factors influencing agarase activity were selected by Plackett-Burman design. They are agar concentration, yeast extract concentration and seed age. Then the optimum levels of these three variables were further determined using Box-Behnken design. The highest agarase activity is obtained in the medium consisting of 2.49 g L-1 agar and 0.88 g L-1 yeast extract when the seed age is 25.64 h. The levels of other factors are 1 g L-1 peptone, 0.01 g L-1 ironic citrate at initial pH 7.0 and 28 °C. The whole optimization strategy results in the activity of agarase reaches 1.158 U mL-1, which is about 6.2-fold increase compares with the control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1227-1232

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Aoki, T. Araki, M. Kitamikado: Eur. J. Biochem. Vol. 187 (1990), p.461

Google Scholar

[2] C.H. Araki: J. Chem. Soc. Vol. 58 (1937), p.1338

Google Scholar

[3] J.X. Wang, X.L. Jiang, H.J. Mou, H.S. Guan: J. Appl. Phycol. Vol. 16 (2004), p.333

Google Scholar

[4] F. Weinberger, C. Richard, B. Kloareg, Y. Kashman, H.G. Hoppe, M. Friedlander: J. Phycol. Vol. 37 (2001), p.418

Google Scholar

[5] A. Giordano, G. Andreotti, A. Tramice, A. Trincone: Biotechnol. J. Vol. 1 (2006), p.511

Google Scholar

[6] R. Kobayashi, M. Takisada, T. Suzuki, K. Kirimura, S. Usami: Biosci. Biotechnol. Biochem. Vol. 61 (1997), p.162

Google Scholar

[7] P. Potin, C. Richard, C. Rochas, B. Kloareg: Eur. J. Biochem. Vol. 214 (1993), p.599

Google Scholar

[8] R. Hassari, BenAmar, M. Nonus, B.B. Gupta: Bioresource Technol. Vol. 79 (2001), p.47

Google Scholar

[9] K. Kirimura, N. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, S. Usami: J. Biosci. Bioeng. Vol. 87 (1999), p.436

Google Scholar

[10] T. Araki, Z. Lu, T. Morishita: J. Mar. Biotechnol. Vol. 6 (1998), p.193

Google Scholar

[11] Y. Sugano, I. Terada, M. Arita, M. Noma: Appl. Environ. Microbiol. Vol. 59 (1993), p.1549

Google Scholar

[12] M. Lakshmikanth, S. Manohar, Y. Souche, J. Lalitha: World J. Microbiol. Biotechnol. Vol. 22 (2006), p.1087

Google Scholar

[13] J. Wang, H. Mou, X. Jiang, H. Guan: Appl. Microbiol. Biotechnol. Vol. 71 (2006), p.833

Google Scholar

[14] M. Duckworth, J.R. Turvey: Biochem. J. Vol. 113 (1969), p.139

Google Scholar

[15] J. Vera, R. Alvarez, E. Murano, J.C. Slebe, O. Leon: Appl. Environ. Microbiol. Vol. 64 (1998), p.4378

Google Scholar

[16] T. Araki, M. Hayakawa, Z. Lu, S. Karita, T. Morishita: J. Mar. Biotechnol. Vol. 6 (1998), p.260

Google Scholar

[17] X.T.Fu, H. Lin, S.M. Kim: Process Biochem. Vol. 44 (2009), p.1158

Google Scholar

[18] M. Lakshmikanth, S. Manohar, J. Patnakar, P. Vaishampayan, Y. Shouche, J. Lalitha: World J. Microbiol. Biotechnol. Vol. 22 (2006), p.531

DOI: 10.1007/s11274-005-9068-2

Google Scholar

[19] Z.J. Du, G.Q. Lv, P.R. Alejandro, T.T. Miao, Q.Q. Xu, G.J. Chen: Int. J. Syst. Evol. Microbiol. Vol. 61 (2011), p.493

Google Scholar

[20] E. Borel, F. Hostettler, H. Deuel: Helv. Chim. Acta. Vol. 35 (1952), p.115

Google Scholar

[21] R.L. Plackett, J.P. Burman: Biometrika. Vol. 33 (1946), p.305

Google Scholar

[22] G.E.P. Box, W.G. Hunter, J.S. Hunter: New York. Wiley (1978), p.291

Google Scholar

[23] G.E.P. Box, K.B. Wilson: J. Roy. Stat. Soc. B. Vol. 13 (1951), p.1

Google Scholar