Step and Domain Boundary Effect of Surface Reconstruction to Si(111)-√ 3×√3-Ag

Article Preview

Abstract:

The influence of step and domain boundary on growth of Si(111)-√ 3×√3-Ag has been studied in situ using optical surface second-harmonic generation and low energy electron diffraction. The second harmonic intensity shows a difference of about 50% for Si(111) surfaces with different miscut angles and domain boundary densities, although no significant difference has been observed in low energy electron diffraction patterns, indicating a significant impediment to the growth of Si(111)-√ 3×√3-Ag by step and domain boundaries. Simulation results reveal a 90% coverage of Si(111)-√ 3×√3-Ag on the vicinal substrate with an miscut angle of 0.41o, consistent with the dynamics of Ag atoms on Si(111)-7×7 surface. The influence of two dimentional adatom gas on surface structure has also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

357-361

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Lelay, M. Manneville, and R. Kern: Surf. Sci. Vol.72 (1978), p.405.

Google Scholar

[2] H. Yasunaga, S. Sakomura, T. Asaoka, S. Kanayama, N. Okuyama, and A. Natori: Jpn. J. Appl. Phys. Vol.27 (1988), p.L1603.

DOI: 10.1143/jjap.27.l1603

Google Scholar

[3] D. W. McComb, D. J. Moffatt, and P. A. Hackett: Phys. Rev. B Vol.49 (1994), p.17139.

Google Scholar

[4] S. Hasegawa, X. Tong, S. Takeda, N. Sato, and T. Nagao: Progress in Surface Science Vol.60 (1999), p.89.

Google Scholar

[5] D. M. Deng and T. Suzuki: Jpn. J. Appl. Phys. 43 (2004), p.L510.

Google Scholar

[6] V. A. Gasparov and M. Riehl-Chudoba: J. Phys.: Condens. Matter 0708 (2007), p.4148.

Google Scholar

[7] H. Hirayama: Surf. Sci. Vol.603 (2009), p.1492.

Google Scholar

[8] Y. Y. Li, M. Liu, D. Y. Ma, D. C. Yu, X. Chen, X. C. Ma, Q. K. Xue, K. W. Xu, J. F. Jia, and F. Liu: Phys. Rev. Lett. Vol.103 (2009), p.076102.

Google Scholar

[9] K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi: Surf. Sci. Vol.164 (1985), p.367.

Google Scholar

[10] R. J. Hamers, R. M. Tromp, and J. E. Demuth: Phys. Rev. Lett. Vol.56 (1986), p.1972.

Google Scholar

[11] M. Ueno, I. Matsuda, C. Liu, and S. Hasegawa: Jpn. J. Appl. Phys. Vol.42 (2003), p.4894.

Google Scholar

[12] R. Venkataraghavan, M. Aono, and T. Suzuki: Surf. Sci. Vol.517 (2002), p.65.

Google Scholar

[13] Y. Nakajima, S. Takeda, T. Nagao, and S. Hasegawa: Phys. Rev. B Vol.56 (1997), p.6782.

Google Scholar

[14] J. D. Mahony, J. F. McGilp, C. F. J. Flipse, P. Weightman, and F. M. Leibsle: Phys. Rev. B Vol.49 (1994), p.2527.

Google Scholar

[15] J.-L. Lin, D. Y. Petrovykh, J. Viernow, F. K. Men, D. J. Seo, and F. J. Himpsel: J. Appl. Phys. Vol.84 (1998), p.255.

Google Scholar

[16] A. A. Saranin, A. V. Zotov, S. V. Ryzhkov, D. A. Tsukanov, V. G. Lifshits, J.-T. Ryu, O. Kubo, H. Tani, T. Harada, M. Katayama, and K. Oura: Phys. Rev. B Vol.58 (1998), p.11.

DOI: 10.1016/s0039-6028(98)00542-1

Google Scholar

[17] A. A. Saranin, A. V. Zotov, V. G. Lifshits, J.-T. Ryu, O. Kubo, H. Tani, T. Harada, M. Katayama, and K. Oura: Surf. Sci. Vol.429 (1999), p.127.

DOI: 10.1016/s0039-6028(99)00355-6

Google Scholar

[18] D. Deng and T. Suzuki: Phys. Rev. B Vol.72 (2005) , p.085308.

Google Scholar

[19] K. Vanormelingen, K. Paredis, and A. Vantomme: Appl. Phys. Lett. Vol.86 (2005), p.161906.

Google Scholar

[20] J. Wollschlaer and C. Tegenkamp: Phys. Rev. B Vol.75 (2007), p.245439.

Google Scholar

[21] R. Wu, Y. Zhang, F. Pan, L. L. Wang, X. C. Ma, J. F. Jia, and Q. K. Xue: Adv. Mater. Vol.21 (2009), p.1.

Google Scholar