Preparation and Characterization of High-Density Li0.99W0.01FePO4/C Composite Cathodes

Article Preview

Abstract:

High tap-density Li0.99W0.01FePO4/C composite have been synthesized via a simple and low-cost solid state-carbothermal reduction method, using Fe2O3 and citrate ferric as the Fe3+ precursors and citric radical containing in citrate ferric as both carbon source and reducing agent. The structure, morphology, and physicochemical properties of Li0.99W0.01FePO4/C composite were characterized by XRD, SEM, laser diffraction and scattering measurement, and tap-density testing. It is observed the particle distribution of the Li0.99W0.01FePO4/C composite is bimodal distribution. Because of the smaller particles filling in the space between the larger particles, the Li0.99W0.01FePO4/C composite exhibits less vacancy, which resulted in a high tap density of 1.50 g•cm-3. The Li0.99W0.01FePO4/C composite also shows good rate capability and cycle performance. At current densities of 0.2, 0.5, 1.0 and 1.5 C, the composite material has initial discharge specific capacity of 141, 133, 130 and 125 mAh•g-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

399-403

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Kong, H. Li, X.J. Huang and L.Q. Chen: J. Power Sources Vol.142 (2005) , p.285

Google Scholar

[2] S.H. Ju and Y.C. Kang: Mater. Chem. Phys. Vol.107 (2008), p.328

Google Scholar

[3] C.Y. Lai, Q.J. Xu, H.H. Ge, G.D. Zhou and J.Y. Xie: Solid State Ionics, Vol.179 (2008), p.1736

Google Scholar

[4] H. Gabrisch, J.D. Wilcox and M.M. Doeff: Electrochem. Solid-State Lett. Vol.9 (2006), p.A360

Google Scholar

[5] A.D. Spong, G. Vitins and J.R. Owen: J. Electrochem. Soc. Vol.152 (2005), p.A2376

Google Scholar

[6] J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park and Y.S. Lee: Mater. Lett. Vol.63 (2009), p.581

Google Scholar

[7] J.F. Ni, H.H. Zhou, J.T. Chen and X.X. Zhang: Mater. Lett. Vol.61 (2007), p.1260

Google Scholar

[8] J.R. Ying, M. Lei, C.Y. Jiang, C.R. Wan, X.M. He, J.J. Li, L. Wang and J.G. Ren: J. Power Sources Vol.158 (2006), p.543

Google Scholar

[9] Z.R. Chang, H.J. Lv, H.W. Tang, H.J. Li, X.Z. Yuan and H.J. Wang: Electrochim. Acta Vol.54 (2009), p.4595

Google Scholar

[10] M.E. Zhong, Z.H. Zhou and Z.T. Zhou: Acta Phys. -Chim. Sin, Vol.25 (2009), p.1

Google Scholar

[11] P.S. Herle, B. Ellils, N. Coombs and L.F. Nazar: Nat. Mater. Vol.3 (2004), p.147

Google Scholar

[12] C.W. Kim, J.S. Park and K.S. Lee: J. Power Sources Vol.163 (2006), p.144

Google Scholar

[13] H. Liu, J.Y. Xie and K. Wang: Solid State Ionics Vol.179 (2008), p.1768

Google Scholar

[14] C.W. Kim, M.H. Lee, W.T. Jeong and K.S. Lee: J. Power Sources Vol.146 (2005), p.534

Google Scholar

[15] M.R. Yang, W.H. Ke and S.H. Wu: J. Power Sources Vol.146 (2005), p.539

Google Scholar

[16] T. Takeuchi, M. Tabuchi, A. Nakashima, T. Nakamura, Y. Miwa, H. Kageyama and K. Tatsumi: J. Power Sources Vol.146 (2005), p.575

DOI: 10.1016/j.jpowsour.2005.03.099

Google Scholar

[17] H. Liu, Y. Feng, Z.H. Wang, K. Wang and J.Y. Xie: Powder Technol. Vol.184 (2008), p.313

Google Scholar

[18] A.K. Park, K.S. Nanjundaswamy and J.B. Goodenough: J. Electrochem. Soc. Vol.144 (1997), p.1188

Google Scholar