Fire Performances, Hot Properties and Decomposition Kinetics of Sb2O3/DBDPE/RTV

Article Preview

Abstract:

Fire and hot properties of title composite were taken by the method of vertical burning, OI, and TG. Fire performance experiments demonstrated that the scale of flame retardant property of Sb2O3/ DBDPE/RTV was FV-0, OI was 46. Hot decomposition temperature is about 400 oC to 520 oC with the amount of 20wt% as additives. The kinetic parameters of the decomposition reaction of the title composite have been studied by means of DSC. The data are fitted to the integral, differential and exothermic rate equations by linear least-squares, iterative, combined dichotomous and least-squares methods, respectively. The study leads the reader to the conclusion that the empirical kinetic model functions in differential form, the values of and of this reaction were , -1857.20 kJ/mol and 244.9 s-1 respectively. Sb2O3/ DBDPE are a kind of flame retardant which own its flame retardant function to higher activation energy but the release of halogen. It is a usable retardant during the lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

117-121

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Z. Chen, J. R. Nie, S. P. Yi, W. B. Wu, Y. L.Zhong and J. Liao: Polymer Degradation and Stability, Vol.95 (2010) No.3, p.618.

Google Scholar

[2] D. Z.Chen, S.P Yi, W. B. Wu, Y. L. Zhong, J. Liao and C. Huang: Polymer, Vol.51 (2010) No.16, p.3867.

Google Scholar

[3] D. Bodas, J. Y. Rauch and K. M. Chantal: European Polymer Journal , Vol.44 (2008) No.12, p.2130.

Google Scholar

[4] A. Labouriau, J. D. Cox, J. R. Schoonover, B. M. Patterson, G. J. Havrilla and T. Stephens: Polymer Degradation and Stability, Vol.92 (2007) No.2, p.414.

DOI: 10.1016/j.polymdegradstab.2006.11.017

Google Scholar

[5] J. P. Lewicki, J. J. Liggat, A. Richard, M. P. Pethrick and I. Rhoney: Polymer Degradation and Stability, Vol.93 (2008) No.1, p.158.

DOI: 10.1016/j.polymdegradstab.2007.10.008

Google Scholar

[6] M. W. Blair, R. E. Muenchausen, R. D. Taylor, A. Labouriau, D. W. Cooke and T. S. Stephens: Polymer Degradation and Stability, Vol.93 (2008) No.4, p.1585.

DOI: 10.1016/j.polymdegradstab.2008.04.014

Google Scholar

[7] E.A.S. Marques, D. N. M. Magalhães and L. F. M. Silva: Material Wissenschaft and Werkstofftechnik, Vol.42 (2011) No.5, p.471.

Google Scholar

[8] M. Hudis and L. E. Prescott: Journal of Applied Polymer Science, Vol.19 (2007) No.2, p.451.

Google Scholar

[9] J. Stein and L. C. Prutzman: Journal of Applied Polymer Science, Vol.36 (2008) No.3, p.511.

Google Scholar

[10] Y. Shi, T. Kashiwa, R. N. Walters, J. W. Gilman, R. E. Lyon and D. Y. Sogah: Polymer, Vol.50(2009) No.14, p.3487.

Google Scholar

[11] X. G. Zhan, X. P. Ji and Y. F. Zhuge: Silicate Material, Vol.1 (2010) No.1, p.19.

Google Scholar

[12] R. Z. Hu and Q. Z. Shi: Thermal Analysis Kinetics, 1st ed.( Science Press, China 2001), p.67.

Google Scholar

[13] R. Z. Hu and Q. Z. Shi: Thermal Analysis Kinetics, 2nd ed. (Science Press, China 2008), p.40. Fig. 1 Hot Performances of Composites Fig. 2 DSC Curve of Decomposition And RTV Matrix of Composites and RTV Table 4 Kinetic Parameters Obtained by Former Table 1 Fire Performances of Composites Data

Google Scholar