Fire and Thermal Hazard Analyses of Industrial Zeolite Catalysis for Phenol Production

Article Preview

Abstract:

Effective and significant improvement in the technology for the production of phenol has been made over the past decade. New catalysts and processes have been employed to produce a great deal of phenol in the cumene hydroperoxide (CHP) industry. Fire and thermal explosion of CHP has occurred in Taiwan. Therefore, thermal hazard and reactive risk information has been analyzed in this research. Zeolite is employed as a catalyst for the CHP process. The aim of this investigation was to determine the inherent safety of the phenol production process. Effective manufacturing of phenol and safe handling procedures are significant issues for industrial applications. In view of loss prevention, calorimetric application and model evaluations to integrate thermal hazard development are necessary and useful for inherently safer design.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

161-166

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. M. Luo, J. G. Chang, S. H. Lin, C. T. Chang, T. F. Yeh, K. H. Hu, and C. S. Kao, J. Loss Prev. Process Ind., 14, 229–39, 2001.

Google Scholar

[2] M. E. Levin, N. O. Gonzales, L. W. Zimmerman, and J. Yang, J. Hazard. Mater., 130, 88–106, 2005.

Google Scholar

[3] Y. W. Wang, C. M. Shu, Y. S. Duh, and C. S. Kao, Ind. Eng. Chem. Res., 40, 1125–32, 2001.

Google Scholar

[4] J. R. Chen, S. H Wu, S. Y. Lin, H. Y. Hou, and C. M. Shu, J. Therm. Anal. Cal., 93, 1, 127–33, 2008.

Google Scholar

[5] S. H. Wu, Y. W. Wang, T. C. Wu, W. N. Hu, and C. M. Shu, J. Therm. Anal. Cal., 93, 1, 189–94, 2008.

Google Scholar

[6] K. Y. Chen, S. H. Wu, Y. W. Wang, and C. M. Shu, J. Loss Prev. Process Ind., 21, 101–9, 2008.

Google Scholar

[7] R. Chitradevi, S. Anandan, and P. Maruthamuthu, React. Kinet. Catal. Lett., 93, 1, 127−133, 2008.

DOI: 10.1007/s11144-008-5217-6

Google Scholar

[8] E. E. Ekpo and I. M. Mujtaba, International Journal of Chemical Reactor Engineering, 5, A4, 1–21, 2007.

Google Scholar

[9] C. M. Bosch, E. Velo, and F. Recasens, Chem. Eng. Sci., 1451, 2001.

Google Scholar

[10] M. Weber, Process Saf. Prog., 25, 4, 326–30, 2006.

Google Scholar

[11] R. Selvin,G. R. Rajarajeswari, L. S. Roselin, V. B. Sadasivam, Sivasankar, and G. D. Yadav, and N. S. Asthana, Applied Catalysis A: General, 244, 341–57, 2003.

Google Scholar

[12] D. Huang, M. Han, J. Wang, and Y. Jin, Chem. Eng. J., 88, 215–23, 2002.

Google Scholar

[13] R. J. Schmidt, Applied Catalysis A: General, 280, 89–103, 2005.

Google Scholar

[14] J. Wang, L. Yan, G. Qian, G. Lv, G. Li, J. Sup, and X. Wang, React. Kinet. Catal. Lett., 91, 1, 111−8, 2007.

Google Scholar

[15] F. Abdollahi, N. Mostoufi, and R. Sotudeh-Gharebagh, International Journal of Chemical Reactor Engineering, 5, A75, 1–14, 2007.

Google Scholar

[16] J. H. Jian, and Y. F. Liu, Petrochem. Technol., 27, 2, 136–9, 1998.

Google Scholar

[17] K. Y. Koltunov, and V. I. Sobolev, Applied Catalysis A: General, 336, 29–34, 2008.

Google Scholar

[18] K. W Wu, H. Y. Hou, and C. M. Shu, J. Therm. Anal. Calorim., 83, 41–44, 2006.

Google Scholar

[19] T. Ando, T. Fujimoto, and S. Morisaki, J. Hazard. Mater., 28, 251, 1991.

Google Scholar

[20] G. Maria and E. Heinzle, J. Loss Prev. Processes Ind., 11, 187, 1998.

Google Scholar

[21] Z. H. Zeng, Structure Selective Catalysis, The Chinese Petrochemical Press, Beijing, PRC, 105, 1994.

Google Scholar

[22] C. D. Chang and B. P. Pelrine, Production of phenol, European Patent 0125066, 1984.

Google Scholar