[1]
S.P.S. Badwal, and F.T. Ciacchi, Ceramic membrane technologies for oxygen separation, Adv. Mater., vol. 13, 2001, 993-996.
DOI: 10.1002/1521-4095(200107)13:12/13<993::aid-adma993>3.0.co;2-#
Google Scholar
[2]
J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa, Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., vol. 320, 2008, 13-41.
DOI: 10.1016/j.memsci.2008.03.074
Google Scholar
[3]
V.V. Kharton, A.V. Kovalevsky, A.A. Yaremchenko, F.M. Figueiredo, E.N. Naumovich, A.L. Shaulo, and F.M.B. Marques, Surface modification of La0. 3Sr0. 7CoO3−δ ceramic membranes, J. Membr. Sci., vol. 195, 2002, 277-287.
DOI: 10.1016/s0376-7388(01)00567-1
Google Scholar
[4]
W. Wang, J.C. Chen, P. Apte, and T.J. Mazanec, Ion conducting ceramic membrane and surface treatment, US Patent 6264811, (2001).
Google Scholar
[5]
Z.P. Shao, G.X. Xiong, H. Dong, W.S. Yang, and L.W. Lin, Synthesis, oxygen permeation study and membrane performance of a Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas, Sep. Purif. Technol., vol. 25, 2001, 97-116.
DOI: 10.1016/s1383-5866(01)00095-8
Google Scholar
[6]
J.F. Vente, S. McIntosh, W.G. Haije, and H.J.M. Bouwmeester, Properties and performance of BaxSr1−xCo0. 8Fe0. 2O3−δ materials for oxygen transport membranes, J. Solid State Electrochem., vol. 10, 2006, 581-588.
DOI: 10.1007/s10008-006-0130-2
Google Scholar
[7]
B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha, X. Xin, and W. Su, Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0. 8Fe0. 2O3−δ (0. 3 ≤ x ≤ 0. 7), J. European Ceram. Soc. Vol. 26, 2006, 2827-2832.
DOI: 10.1016/j.jeurceramsoc.2005.06.047
Google Scholar
[8]
W. K. Hong, G. M. Choi, Oxygen permeation of BSCF membrane with varying thickness and surface coating, J. Membr. Sci., vol. 346, 2010, 353–360.
DOI: 10.1016/j.memsci.2009.09.056
Google Scholar
[9]
P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao, and S. Liu, Re-evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ perovskite as oxygen semi-permeable membrane, J. Membr. Sci., vol. 291, 2007, 148–156.
DOI: 10.1016/j.memsci.2007.01.003
Google Scholar
[10]
C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, and S. Lenaerts, Fabrication and oxygen permeability of gastight, macrovoid-free Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ capillaries for high temperature gas separation, J. Membr. Sci., , vol. 359, 2010, 86-92.
DOI: 10.1016/j.memsci.2009.10.030
Google Scholar
[11]
C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, and S. Lenaerts, Development, performance and stability of sulphur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air, J. Membr. Sci., vol. 372, 2011, 239-248.
DOI: 10.1016/j.memsci.2011.02.011
Google Scholar
[12]
Z. Shao, and S.M. Haile, A high performance cathode for the next generation solid-oxide fuel cells, Nature, vol. 431, 2004, 170-173.
DOI: 10.1038/nature02863
Google Scholar
[13]
S.J. Xu, and W.J. Thomson, Oxygen permeation rates through ion-conducting perovskite membranes, Chem. Eng. Sci., vol. 54, 1999, 3839-3850.
DOI: 10.1016/s0009-2509(99)00015-9
Google Scholar
[14]
J.M. Serra, and V.B. Vert, Optimisation of oxygen activation fuel cell electrocatalysts by combinatorial designs, Chem. Sus. Chem., vol. 2, 2009, 957-961.
DOI: 10.1002/cssc.200900149
Google Scholar
[15]
S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester, and T. Grande, Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ, Solid State Ionics, vol. 178, 2008, 1787–1791.
DOI: 10.1016/j.ssi.2007.11.031
Google Scholar