Mixed Conducting Ceramic Capillary Membranes for Catalytic Membrane Reactors: Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Capillaries

Article Preview

Abstract:

Oxygen-permeable perovskite ceramics with mixed ionic-electronic conducting properties can play an important role in the high temperature separation of oxygen from air. Such membranes are envisaged for application in catalytic membranes reactors and in oxy-fuel and pre-combustion technologies for fossil fuel power plants enabling CO2 capture. Since large-scale gas separation applications demand high membrane surface/volume ratios, membranes with capillary or hollow fiber geometry have a distinct advantage over tubular and flat sheet membranes. The fabrication and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) capillary membranes is presented. The capillaries were made by a spinning technique based on phase inversion using a sulfur or non-sulfur containing polymer binder. Attention is given to the polymer solution and ceramic spinning suspension in order to avoid the formation of macrovoids and achieve gastight membranes. The comparison of the performance of sulfur-free and sulfur-containing BSCF capillaries with similar dimensions revealed a profound impact of the sulfur contamination on both the oxygen flux and the activation energy of the overall oxygen transport mechanism. In addition the effect of activation layers on oxygen permeation is studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

853-859

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P.S. Badwal, and F.T. Ciacchi, Ceramic membrane technologies for oxygen separation, Adv. Mater., vol. 13, 2001, 993-996.

DOI: 10.1002/1521-4095(200107)13:12/13<993::aid-adma993>3.0.co;2-#

Google Scholar

[2] J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J.C. Diniz da Costa, Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., vol. 320, 2008, 13-41.

DOI: 10.1016/j.memsci.2008.03.074

Google Scholar

[3] V.V. Kharton, A.V. Kovalevsky, A.A. Yaremchenko, F.M. Figueiredo, E.N. Naumovich, A.L. Shaulo, and F.M.B. Marques, Surface modification of La0. 3Sr0. 7CoO3−δ ceramic membranes, J. Membr. Sci., vol. 195, 2002, 277-287.

DOI: 10.1016/s0376-7388(01)00567-1

Google Scholar

[4] W. Wang, J.C. Chen, P. Apte, and T.J. Mazanec, Ion conducting ceramic membrane and surface treatment, US Patent 6264811, (2001).

Google Scholar

[5] Z.P. Shao, G.X. Xiong, H. Dong, W.S. Yang, and L.W. Lin, Synthesis, oxygen permeation study and membrane performance of a Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas, Sep. Purif. Technol., vol. 25, 2001, 97-116.

DOI: 10.1016/s1383-5866(01)00095-8

Google Scholar

[6] J.F. Vente, S. McIntosh, W.G. Haije, and H.J.M. Bouwmeester, Properties and performance of BaxSr1−xCo0. 8Fe0. 2O3−δ materials for oxygen transport membranes, J. Solid State Electrochem., vol. 10, 2006, 581-588.

DOI: 10.1007/s10008-006-0130-2

Google Scholar

[7] B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha, X. Xin, and W. Su, Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0. 8Fe0. 2O3−δ (0. 3 ≤ x ≤ 0. 7), J. European Ceram. Soc. Vol. 26, 2006, 2827-2832.

DOI: 10.1016/j.jeurceramsoc.2005.06.047

Google Scholar

[8] W. K. Hong, G. M. Choi, Oxygen permeation of BSCF membrane with varying thickness and surface coating, J. Membr. Sci., vol. 346, 2010, 353–360.

DOI: 10.1016/j.memsci.2009.09.056

Google Scholar

[9] P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao, and S. Liu, Re-evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ perovskite as oxygen semi-permeable membrane, J. Membr. Sci., vol. 291, 2007, 148–156.

DOI: 10.1016/j.memsci.2007.01.003

Google Scholar

[10] C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, and S. Lenaerts, Fabrication and oxygen permeability of gastight, macrovoid-free Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ capillaries for high temperature gas separation, J. Membr. Sci., , vol. 359, 2010, 86-92.

DOI: 10.1016/j.memsci.2009.10.030

Google Scholar

[11] C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, and S. Lenaerts, Development, performance and stability of sulphur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air, J. Membr. Sci., vol. 372, 2011, 239-248.

DOI: 10.1016/j.memsci.2011.02.011

Google Scholar

[12] Z. Shao, and S.M. Haile, A high performance cathode for the next generation solid-oxide fuel cells, Nature, vol. 431, 2004, 170-173.

DOI: 10.1038/nature02863

Google Scholar

[13] S.J. Xu, and W.J. Thomson, Oxygen permeation rates through ion-conducting perovskite membranes, Chem. Eng. Sci., vol. 54, 1999, 3839-3850.

DOI: 10.1016/s0009-2509(99)00015-9

Google Scholar

[14] J.M. Serra, and V.B. Vert, Optimisation of oxygen activation fuel cell electrocatalysts by combinatorial designs, Chem. Sus. Chem., vol. 2, 2009, 957-961.

DOI: 10.1002/cssc.200900149

Google Scholar

[15] S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester, and T. Grande, Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ, Solid State Ionics, vol. 178, 2008, 1787–1791.

DOI: 10.1016/j.ssi.2007.11.031

Google Scholar