[1]
Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems[J]. Automatica, 2008, 44: 2985-2988.
DOI: 10.1016/j.automatica.2008.07.003
Google Scholar
[2]
Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems[J]. Automatica, 2009, 45: 1965-(1969).
DOI: 10.1016/j.automatica.2009.04.003
Google Scholar
[3]
Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability[J]. Computers and Mathematics with Applications, 2010, 59: 1810-1821.
DOI: 10.1016/j.camwa.2009.08.019
Google Scholar
[4]
Qian D L, Li C P, Agarwal R P, Wong P J Y. Stability analysis of fractional differential system with Riemann-Liouville derivative[J]. Mathematical and Computer Modelling, 2010, 52: 862-874.
DOI: 10.1016/j.mcm.2010.05.016
Google Scholar
[5]
Trigeassou J C, Maamri N, Sabatier J, Oustaloup A. A Lyapunov approach to the stability of fractional differential equations[J]. Signal Processing, 2011, 91: 437-445.
DOI: 10.1016/j.sigpro.2010.04.024
Google Scholar
[6]
Sabatier J, Moze M, Farges C. LMI stability conditions for fractional order systems[J]. Computers and Mathematics with Applications, 2010, 59: 1594-1609.
DOI: 10.1016/j.camwa.2009.08.003
Google Scholar
[7]
Lan Y H, Zhou Y. LMI-based robust control of fractional-order uncertain linear systems[J]. Computers and Mathematics with Applications(2011), doi: 10. 1016/j. camwa. 2011. 03. 028.
DOI: 10.1016/j.camwa.2011.03.028
Google Scholar
[8]
Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system usting Lyapunov inequality[J]. Applied Matehmatics and Computation, 2007, 187: 27-34.
DOI: 10.1016/j.amc.2006.08.099
Google Scholar
[9]
Chen Y Q, Ahn H S, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties[J]. Signal Processing, 2006, 86: 2611-2618.
DOI: 10.1016/j.sigpro.2006.02.011
Google Scholar
[10]
Chilali M, Gahinet P, Apkarian P. Robust pole placement in LMI regions, IEEE Transtctions on Automatic Control, 1999, 44(12): 2257-2270.
DOI: 10.1109/9.811208
Google Scholar
[11]
Chai L, Fei S M, Xin Y B. A new type of adaptive control for time-delay systems with input delay[J], Journal of systems science and Mathematical Sciences, 2008, 28(12): 1535-1544.
Google Scholar