Effect of Retrogression Time on the Mechanical Properties and Stress Corrosion Cracking Behavior of 7A60 Aluminum Alloy

Article Preview

Abstract:

7A60 aluminum alloy was treated under different retrogression time, and the micro-structure, mechanical properties and stress corrosion behaviors were observed and determined by optical microscopy, transmission electron microscopy and slow strain rate tester. The results shown that with the increasing of retrogression time the precipitates within the grains were gradually grown up, and the precipitates along the grain boundaries were changed from small and closely spaced into coarse and widely spaced ones. The elongation and toughness ratio of 7A60 alloy increased obviously with the retrogression time, whereas the tensile strength and hardness of 7A60 alloy decreased. The optimum retrogression time is about 60min, under which 7A60 alloy has a best combination of tensile strength, ductility and stress corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

227-233

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Onoro: Materials and Corrosion, Vol. 61(2010), p.125.

Google Scholar

[2] R. G. Song, W. Dietzel, B. J. Zhang, W. J. Liu, M. K. Tseng, A. Atrens: Acta Materialia, Vol. 52(2004), p.4727.

Google Scholar

[3] B. M. Cina: U. S. Patent 3856584. (1974).

Google Scholar

[4] J. C. Lin, H. L. Liao, W. D. Jehng, C. H. Chang, S. L. Lee: Corrosion Science, Vol. 48(2006), p.3139.

Google Scholar

[5] M. Baydogan, H. Cimenoglu, E. S. Kayali, J. Rasty: Metallurgical and Materials Transactions A, Vol. 39A(2008), p.2470.

Google Scholar

[6] Y. Reda, R. Abdel-Karim, I. Elmahallawi: Materials Science and Engineering A, Vol. 485(2008), p.468.

Google Scholar

[7] E. Habiby, A. Ulhaq, F. H. Hashmi, A. Q. Khan: Metallurgical Transactions A, Vol. 18A(1987), p.350.

Google Scholar

[8] A. F. Oliveira, J. M. C. Barros, K. R. Cardoso, D. N. Travessa: Materials Science and Engineering A, Vol. 379(2004), p.321.

Google Scholar

[9] M. Angappan,V. Sampath, B. Ashok, V. P. Deepkuma: Materials and Design, Vol. 32(2011), p.4050.

Google Scholar

[10] H. C. Fang, K. H. Chen, Z. Zhang, C. J. Zhu: Transactions of Nonferrous Metals Society of China, Vol. 18(2008), p.28.

Google Scholar

[11] K. Y. Xiao, X. J. Zheng, J. L: Nuclear Power Engineering, Vol. 28(S1)(2007), p.87(In Chinese).

Google Scholar

[12] C. F. Meng, H. W. Long, Y. Zheng: Metallurgical and Materials Transactions A, Vol. 28A(1997), p. (2067).

Google Scholar

[13] J. F. Li, N. Birbilis, C. X. Li, Z. Q. Jia, B. Cai, Z. Q. Zheng: Materials Characterization, Vol. 60(2009), p.1334.

Google Scholar

[14] J. K. Park: Materials Science and Engineering, Vol. 103(1988), p.223.

Google Scholar

[15] M. Puiggali, A. Zielinski, J. M. Olive, E. Renauld, D. Desjardins, M. Cid: Corrosion Science, Vol. 40(1998), p.805.

DOI: 10.1016/s0010-938x(98)00002-x

Google Scholar

[16] M. B. Kannan, V. S. Raja: Engineering Fracture Mechanics, Vol. 77(2010), p.249.

Google Scholar

[17] F. Viana, A. M. P. Pinto, H. M. C. Santos, A. B. Lopes: Journal of Materials Processing Technology, Vol. 92/93(1999), p.54.

Google Scholar

[18] H. C. Fang, K. H. Chen, X. Chen, H. Chao, G. S. Peng: Corrosion Science, Vol. 51(2009), p.2872.

Google Scholar