Electrical Properties of InSbN Alloys Fabricated by Two-Step Ion Implantation

Article Preview

Abstract:

We report the electrical properties of the InSbN alloys fabricated by two-step implantation of nitrogen ions into InSb wafers, characterized by Hall measurements. The alloy with higher implanted dose shows lower electron concentration due to the acceptor nature of nitrogen. At temperatures below 150 K, the electron concentration does not change and follows an exponential relation at above 200 K. The Hall mobility in all samples monotonically decreases with the increase of temperature, indicating the phonon dominating scattering mechanism. The annealing results reveal that annealing temperatures up to 598 K make the carrier concentration lower due to the reduction of donor-type defects caused by ion implantation and the acceptor nature of nitrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

305-310

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rogalski, Progress in Quantum Electronics, Vol. 27 (2003), p.59.

Google Scholar

[2] D. H. Zhang and W. Shi, Appl. Phys. Lett. Vol. 73, (1998), p.1095.

Google Scholar

[3] W. Shi. et al., J. Crys. Growth, Vol. 197, (1999) p.89.

Google Scholar

[4] D. H. Zhang, X. Z. Wang, H. Q. Zheng, S. F. Yoon and C. H. Kam, J. Vac. Sci. & Technol., B18, (2000), p.2274.

Google Scholar

[5] D. H. Zhang, Shi W. Shi, H. Q. Zheng et al. J. Crys. Growth, Vol. 211, (2000) p.384.

Google Scholar

[6] D. H. Zhang, Materials Science and Engineering B-Solid State Materials for Advanced Technology, Vol. 60, (1999), p.189.

Google Scholar

[7] D. H. Zhang, C. Y. Li and S. F. Yoon, J. Crys. Growth, Vol. 181, (1997), p.1.

Google Scholar

[8] D. H. Zhang, K. Radhakrishnan and S. F. Yoon, J. Crystal Growth, Vol. 148, (1995), p.35.

Google Scholar

[9] D. H. Zhang, Y. Gao, Y., J. Wei, Z.Q. Mo, Z. Q, Thin Solid Films, Vol. 377-378, (2000) p.607.

Google Scholar

[10] Y. Gao, et al., Thin Solid Films, Vol. 377-378, (2000) p.562.

Google Scholar

[11] C. Y Li et al., Surface Review Letters, Vol. 8(5), (2001) p.459.

Google Scholar

[12] L.Y. Yang et al., Thin Solid Films, Vol. 462, (2004) p.176.

Google Scholar

[13] D. H. Zhang, W. Liu, L. Sun, W.J. Fan, S.F. Yoon and S.Z. Wang, J. Appl. Phys., Vol. 99 (2006), p. (043514), 1-4.

Google Scholar

[14] O. Nesher, S. Elkind, I. Nevo, T. Markovitz, A. Ganany, A. B. Marhashev, I. Fisher, M. Kenan and M. B. Ezra, Proc. Infrared Technology and Applications XXX, SPIE 5406, 214 (2004).

DOI: 10.1117/12.544508

Google Scholar

[15] T. Ashley, T. M. Burke, G. J. Pryce, A. R. Adams, A. Andreev, B. N. Murdin, E. P. O'Reilly and C. R. Pidgeon, Solid-State Elec. Vol. 47 (2003) p.387.

DOI: 10.1016/s0038-1101(02)00377-5

Google Scholar

[16] D. H. Zhang, W. Liu, Y. Wang, X. Z. Chen, J. H. Li, Z. M. Huang and S. S. Y. Zhang, Appl. Phys. Lett. Vol. 93 (2008), p.131107.

Google Scholar

[17] X. Z. Chen, D. H. Zhang, W. Liu, Y. Wang, J.H. Li, A.T.S. Wee and A. Ramam, Electronics Letters, Vol. 46, No. 11 (2010), p.787.

Google Scholar

[18] I. Mahboob, T. D. Veal and C. F. McConville, J. Appl. Phys. Vol. 96 (2004), p.4935.

Google Scholar

[19] J. R. Soderstrom, M. M. Cumming, J-Y Yao and T. G. Andersson, Semicond. Sci. Technol. Vol. 7, (1992), p.337.

Google Scholar

[20] J. J. Hopfield, D. G. Thomas, and R. T. Lynch, Phys. Rev. Lett. Vol. 17 (1966), p.312.

Google Scholar

[21] K. M. Yu, W. Walukiewicz, J. Wu, D. E. Mars, D. R. Chamberlin, M. A. Scarpulla, O. D. Dubon, and J. F. Geisz, Nat. Mater. Vol. 1 (2002), p.185.

DOI: 10.1038/nmat754

Google Scholar