Influence of Pump Light’s Duty Cycle on Cesium Atomic Magnetometer

Article Preview

Abstract:

Recently, atomic magnetometers have been researched widely for its ultra high sensitivity. But the influence of pump light’s duty cycle on atomic magnetometers has been concerned little. In this paper, we described a sensitive cesium atomic magnetometer based on circular dichroism, which had the advantage of easily locking the probing laser to the necessary frequency. We experimentally investigated the amplitudes and linewidths of magnetic resonance signals at different modulated duty cycle of the pump light. The result indicated that our magnetometer achieved the highest sensitivity at the duty cycle of 30%. It’s valuable for optimizing the sensitivity of most atomic magnetometers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-213

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Allred, R.N. Lyman, T.W. Kornack and M.V. Romalis: Physical Review Letters Vol. 89, No. 13 (2002), p.130801.

Google Scholar

[2] D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk and M. Zolotorev: Physical Review A Vol. 62 (2000), p.043403.

Google Scholar

[3] V. Acosta, M.P. Ledbetter, S.M. Rochester and D. Budker: Physical Review A Vol. 73 (2006), p.053404.

Google Scholar

[4] M.P. Ledbetter, I.M. Savukov, et al.: Physical Review A Vol. 77 (2008), p.033408.

Google Scholar

[5] H. Xia, A. Ben-Amar Baranga, D. Hoffman and M.V. Romalis: Applied Physics Letters Vol. 89 (2006), p.211104.

DOI: 10.1063/1.2392722

Google Scholar

[6] Cort Johnson and Peter D.D. Schwindt: A two-color pump probe atomic magnetometer for magnetoencephalography, IEEE (2010), pp.371-375.

DOI: 10.1109/freq.2010.5556310

Google Scholar

[7] Cort Johnson, Peter D.D. Schwindt and Michael Weisend: Applied Physics Letters Vol. 97 (2010), p.243073.

Google Scholar

[8] Shoujun Xu, et al.: PNAS Vol. 103, No. 34 (2006), pp.12688-12671.

Google Scholar

[9] I.M. Savukov and M.V. Romalis: Physical Review Letters Vol. 94 (2005), p.1230001.

Google Scholar

[10] Andrei Ben-Amar Baranga, Dan Hoffman, Hui Xia and Michael V. Romalis: An atomic magnetometer for brain activity imaging, IEEE (2005), pp.417-418.

DOI: 10.1109/rtc.2005.1547485

Google Scholar

[11] H. Xia, A. Ben-Amar Baranga, D. Hoffman and M.V. Romalis: Detection of auditory evoked responses with atomic magnetometer, International Congress Series 1300 (2007), pp.627-630.

DOI: 10.1016/j.ics.2007.02.028

Google Scholar

[12] B Lindseth, P Schwindt, J Kitching, D Fischer and V Schusterman: Computers in Cardiology Vol. 34 (2007), pp.443-446.

Google Scholar

[13] Dmitry Budker and Michael Romalis: Nature Physics Vol. 3 (2007), pp.227-234.

Google Scholar

[14] T.W. Kornack, S.J. Smullin, S.K. Lee and M.V. Romalis: Applied Physics Letters Vol. 90 (2007), p.223501.

DOI: 10.1063/1.2737357

Google Scholar

[15] S.K. Lee and M.V. Romalis: Journal of Applied Physics Vol. 103 (2008), p.084904.

Google Scholar

[16] W. Clark Griffith, Svenja Knappe and John Kitching: Optics Express Vol. 18, No. 26 (2010), p.27167.

DOI: 10.1364/oe.18.027167

Google Scholar

[17] S. Pustelny, D.F. Jackson Kimball, et al.: Physical Review A Vol. 74 (2006), p.063406.

Google Scholar

[18] M.P. Ledbetter, I. M. Savukov, et al.: Physical Review A Vol. 77 (2008), p.033408.

Google Scholar

[19] S.J. Seltzer and M.V. Romalis: Applied Physics Letters Vol. 85 (2004), p.4804.

Google Scholar