An Improved Frame Synchronization for Optical OFDM Systems

Article Preview

Abstract:

Orthogonal frequency division multiplexing (OFDM) is applied to optical communication widely because of its robustness against channel dispersion and high spectral efficiency. But the synchronization between transmitter and receiver is a critical factor for system performances. This paper proposes an improved frame timing synchronization algorithm for optical OFDM system to keep synchronization by delay time compensation. The simulation of 40 Gb/s single-side-band (SSB) direct-detection optical OFDM system is setup and investigated. The curve of timing metric and the constellation of four-quadrature amplitude modulation (QAM) are given in the paper. And the transmission distance using the proposed method is compared with Park method. The simulation results show that the improved frame synchronization method promote the performances of optical OFDM system greatly. The distance can be 1600 km without dispersion compensation under the bit error ratio of 10-4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

646-650

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ye (Geoffrey) Li, Gordon L. Stüber, Orthogonal Frequency Division Multiplexing for Wireless Communications. New York, NY: Springer, 2006, pp.1-4.

Google Scholar

[2] Jean Armstrong, OFDM for optical communications, Journal of Lightwave Technology, vol. 27, Feb. 2009, pp.189-204, doi: 10. 1109/JLT. 2008. 2010061.

Google Scholar

[3] W. Shieh, X. Yi and Y. Tang, Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000km SSMF fibre, Electronics Letters, vol. 43, Feb. 2007, pp.183-185.

DOI: 10.1049/el:20073496

Google Scholar

[4] Jianjun Yu, Ze Dong, and Nan Chi, 1. 96 Tb/s (21x100 Gb/s) OFDM Optical Signal Generation and Transmission Over 3200-km Fiber, IEEE Photonics Technology Letters, vol. 23, Aug. 2011, pp.1061-1063, doi: 10. 1109/LPT. 2011. 2154324.

DOI: 10.1109/lpt.2011.2154324

Google Scholar

[5] William Shieh, Ivan Djordjevic, OFDM for optical communications. Burlington, MA: Academic, 2010, pp.119-148.

Google Scholar

[6] Le Van Ninh, Trinh Anh Vu, Huu Tue Huynh and P. Fortier, New Cyclic Prefix Based Symbol Timing and Carrier Synchronization for OFDM, 23rd Biennial Symposium on Communications, Jul. 2006, pp.198-203, doi: 10. 1109/BSC. 2006. 1644604.

DOI: 10.1109/bsc.2006.1644604

Google Scholar

[7] Timothy M. Schmidl and Donald C. Cox, Robust frequency and timing synchronization for OFDM, IEEE Transactions on Communications, vol. 45, Dec. 1997, pp.1613-1621, doi: 10. 1109/26. 650240.

DOI: 10.1109/26.650240

Google Scholar

[8] H. Minn, M. Zeng, and V. K. Bhargava, On timing offset Estimation for OFDM Systems, IEEE Communcations Letters, vol. 4, Jul. 2000, pp.242-244, doi: 10. 1109/4234. 852929.

DOI: 10.1109/4234.852929

Google Scholar

[9] Byungjoon Park, Hyunsoo Cheon, Changeon Kang and Daesik Hong, A novel timing estimation method for OFDM systems, IEEE Communcations Letters, vol. 7, May 2003, pp.239-241, doi: 10. 1109/LCOMM. 2003. 812181.

DOI: 10.1109/lcomm.2003.812181

Google Scholar

[10] X. Q. Jin, R. P. Giddings, E. H. Salas, and J. M. Tang, First experimental demonstration of end-to-end real-time optical OFDM symbol synchronization using subtraction and Gaussian windowing in 25 km SMF IMDD systems, Proc. Eur. Conf. Optical Communication (ECOC 2010), Sep. 2010, pp.1-3.

DOI: 10.1109/ecoc.2010.5621544

Google Scholar

[11] J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, A novel method for precise symbol synchronization in double-side band optical fast OFDM, Proc. Optical Fiber Communication Conf. (OFC 2011), Mar. 2011, pp.1-3, Paper JWA023.

DOI: 10.1364/nfoec.2011.jwa023

Google Scholar

[12] Jian Zhao, Selwan K. Ibrahim, Danish Rafique, Paul Gunning, and Andrew D. Ellis, Symbol Synchronization Exploiting the Symmetric Property in Optical Fast OFDM, IEEE Photonics Technology Letters, vol. 23, MAY 2011, pp.594-596.

DOI: 10.1109/lpt.2011.2118195

Google Scholar