Theoretical Investigation of Energy Splitting of γ-LiAlO2: Co3+ Ceramic

Article Preview

Abstract:

The γ-LiAlO2:Co 3+ ceramics were successfully fabricated by using multi-mode cavity microwave furnace, and the sample’s infrared absorption and photoluminescence spectra were measured at room temperature. There are nine bands in the range of 1300-48000 cm-1. Using the crystal-field theory and introducing the average covalent factor model, we calculated the energy splittings of Co3+ ions in γ-LiAlO2. These bands were firstly explained and assigned. These calculation results are in good agreement with the optical experiment data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-85

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ezaki, M. Obara, H. Kumagai and K. Toyoda: Appl Phys Lett. Vol. 69 (1996), p.2977.

Google Scholar

[2] K. Xu, J. Xu and P.Z. Deng: J . Cryst Growth. Vol. 193 (1998), p.127.

Google Scholar

[3] P. Waltereit, O. Brandt and M. Bamsteiner: Phys. Status. Solid. Vol. 180 (2000), p.133.

Google Scholar

[4] P. Waltereit, O. Brandt and M. Bamsteiner: J. Cryst. Growth. Vol. 217 (2000), p.143.

Google Scholar

[5] P. Waltereit, O. Brandt and M. Bamsteiner: Nature. Vol. 406 (2000), p.133865.

Google Scholar

[6] S.I. Hirano and T. Hayashi: J Am Ceram Soc. Vol. 70 (1987), p.133171.

Google Scholar

[7] J. Jimonez-Becerril, P. Bosch and S. Bulbulian: J Nucl Mater. Vol. 185 (1991), p.304.

Google Scholar

[8] Y. Kawamura, M. Nishikawa and K. Tanaka: J Nucl Sci Technol. Vol. 29 (1992), p.436.

Google Scholar

[9] W. Lin, X.D. Bai and Y.H. Ling: Rare Met. Mater. Eng. Vol. 32 (2003), p.995.

Google Scholar

[10] J. Zou and T.H. Huang: Acta phys. sin. Vol. 55 (2006), p.3536.

Google Scholar

[11] T.H. Huang and S.M. Zhou: J. Synth. Cryst. Vol. 36 (2007), p.1249.

Google Scholar

[12] S. Kuck: Chem. Phys. Vol. 204 (1999), p.133387.

Google Scholar

[13] G.L. Peng, Y. Zhuang and J. Zou: J. Synth Cryst. Vol. 34 (2005), p.399.

Google Scholar

[14] W.R. Tinga and W.A.G. Voss: Microwave Power Engineering[M]., New York: Academic Press, 1968. 73-78.

Google Scholar

[15] W.H. Sutton: Am. Ceram. Soc. Bull. Vol. 68 (1989), p.376.

Google Scholar

[16] Z.Z. Jiang: Nucl. Tech. Vol. 26 (2003), p.956.

Google Scholar

[17] M.G. Zhao and W.L. Yu: Crystal Field Theory(M). Sichuan Education Press, Chengdu, 1988 in Chinese.

Google Scholar

[18] M.G. Zhao: Crystal Field And Electron Paramagnetic Resonance Theory(M). Science Press, 1990 in Chinese.

Google Scholar

[19] O. Brandt, R. Muralidharan and P. Waltereit: Appl. phys. lett. 75 (1999), p.4019.

Google Scholar

[20] M.G. Zhao, M.L. Du and G.Y. Sen: J. Phys. C: Solid State Phys. Vol. 20 (1987), p.5557.

Google Scholar

[21] D. Curie, C. Barthou and B. Canny: J. Chem. Phys., Vol. 61 (1974), p.3048.

Google Scholar

[22] M.G. Zhao: The ligand field theory[M]. Guizhou People Press, 1986 in Chinese.

Google Scholar

[23] Y.Y. Yeung and C. Rudowicz: Comput. Chem. Vol. 16 (1992), p.207.

Google Scholar