Modelling of Damage Evolution in the Vicinity of Frictional Interfaces in Metal Forming

Abstract:

Article Preview

Conventional ductile fracture criteria are not applicable in the vicinity of maximum friction surfaces for several rigid plastic material models because the equivalent strain rate (second invariant of the strain rate tensor) approaches infinity near such surfaces. In the present paper, a non-local ductile fracture criterion generalizing the modified Cockroft-Latham ductile fracture criterion is proposed to overcome this difficulty with the use of conventional local ductile fracture criteria. The final form of the new ductile fracture criterion involves the strain rate intensity factor which is the coefficient of the principal singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. When the velocity field is not singular, the new ductile fracture criterion reduces to the modified Cockroft-Latham criterion. The strain rate intensity factor cannot be found by means of commercial finite element packages since the corresponding velocity field is singular. In the present paper, the new fracture criterion is illustrated with the use of an approximate semi-analytical solution for plane strain drawing. It is shown that the prediction is in qualitative agreement with physical expectations.

Info:

Periodical:

Edited by:

Zone-Ching Lin, You-Min Huang, Chao-Chang Arthur Chen and Liang-Kuang Chen

Pages:

124-133

Citation:

E. Lyamina et al., "Modelling of Damage Evolution in the Vicinity of Frictional Interfaces in Metal Forming", Advanced Materials Research, Vol. 579, pp. 124-133, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] A. Atkins, Fracture in forming, J. Mater. Proc. Tech. 56 (1996) 609-618.

[2] M. A. Shabara, A. A., El-Domiaty, M. A. Kandil, Validity assessment of ductile fracture criteria in cold forming, J. Mater. Eng. Perf. 5 (1996) 478-488.

DOI: https://doi.org/10.1007/bf02648845

[3] H. Li, M.W. Fu, J. Lu, H. Yang, Ductile fracture: experiments and computations, Int. J. Plast. 27 (2011) 147-180.

[4] M. D. Cockroft, D. J. Latham, Ductility and the workability of metals, J. Inst. Metals, 96 (1968) 33-39.

[5] S. I. Oh, C. C. Chen, S. Kobayashi, Ductile fracture in axisymmetric extrusion and drawing. Part 2: Workability in extrusion and drawing, J. Eng. Ind. -Trans. ASME. 101 (1979) 36-44.

DOI: https://doi.org/10.1115/1.3439471

[6] D. -C. Ko, B. -M. Kim, J. -C. Choi, Prediction of surface-fracture initiation in the axisymmetric simple upsetting of an aluminum alloy, J. Mater. Proc. Tech. 62 (1996) 166-174.

[7] R. Hambli, M. Reszka, Fracture criteria identification using inverse technique method and blanking experiment, Int. J. Mech. Sci. 44 (2002) 1349-1361.

DOI: https://doi.org/10.1016/s0020-7403(02)00049-8

[8] N. Ogawa, M. Shiomi, K. Osakada, Forming of magnesium alloy at elevated temperatures for precision forming, Int. J. Mach. Tools Manuf. 42 (2002) 607-614.

DOI: https://doi.org/10.1016/s0890-6955(01)00149-3

[9] W. T. Zheng, S. H. Zhang, D. Sorgente, L. Tricarico, G. Palumbo, Approach of using a ductile fracture criterion in deep drawing of magnesium alloy cylindrical cups under non-isothermal condition, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 221 (2007).

DOI: https://doi.org/10.1243/09544054jem756

[10] S. Alexandrov, D. Vilotic, A theoretical experimental method for the identification of the modified Cockroft - Latham ductile fracture criterion, Proc. IMechE, Part C: J. Mech. Eng. Sci. 222 (2008) 1869-1872.

DOI: https://doi.org/10.1243/09544062jmes1055

[11] R. B. Figueiredo, P. R. Cetlin, T.G. Langdon, The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing, Mater. Sci. Eng.: A. 518 (2009) 124-131.

DOI: https://doi.org/10.1016/j.msea.2009.04.007

[12] A. Pesin, V. Salganik and D. Pustovoytov, Modeling of surface crack form change of continuously cast slabs in roughing rolling at wide strip mill2000, Steel Res. Int. 81 (2010) 82-85.

DOI: https://doi.org/10.1063/1.3457534

[13] S. Alexandrov , O. Richmond, Singular plastic flow fields near surfaces of maximum friction stress, Int. J. Non-Linear Mech. 36 (2001) 1-11.

DOI: https://doi.org/10.1016/s0020-7462(99)00075-x

[14] S. Alexandrov, E. Lyamina, Prediction of fracture in the vicinity of friction surfaces in metal forming processes, J. Appl. Mech. Tech. Physics. 47 (2006) 757-761.

DOI: https://doi.org/10.1007/s10808-006-0112-2

[15] S. Alexandrov, E. Lyamina, Non-local criteria of fracture near of friction surfaces and its application to extrusion and drawing processes, J. Mach. Manuf. Rel. 36 (2007) 262-268.

[16] S. Alexandrov, E. Lyamina, Singular solutions for plane plastic flow of pressure-dependent materials, Doklady Physics. 47 (2002) 308-311.

DOI: https://doi.org/10.1134/1.1477887

[17] S. Alexandrov, D. Harris, Comparison of solution behaviour for three models of pressure-dependent plasticity: A simple analytical example, Int. J. Mech. Sci. 48 (2006) 750-762.

DOI: https://doi.org/10.1016/j.ijmecsci.2006.01.009

[18] S. Alexandrov, G. Mishuris, Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces, J. Eng. Math. 65 (2009) 143-156.

DOI: https://doi.org/10.1007/s10665-009-9277-z

[19] S. Alexandrov, Specific features of solving the problem of compression of an orthotropic plastic material between rotating plates, J. Appl. Mech. Tech. Physics. 50 (2009) 886-890.

DOI: https://doi.org/10.1007/s10808-009-0120-0

[20] M. F. Kanninen, C. H. Popelar, Advanced Fracture Mechanics, University Press, (1985).

[21] D. M. Norris, J. E. Reaugh, B. Moran, D. F. Quinones, A plastic-strain, mean-stress criterion for ductile fracture, J. Eng. Mater. Tech. – Trans. ASME. 100 (1978) 279-286.

DOI: https://doi.org/10.1115/1.3443491

[22] T. Aukrust, S. LaZghab, Thin shear boundary layers in flow of aluminium, Int. J. Plast. 16 (2000) 59-71.

[23] S. P. Moylan, S. Kompella, S. Chandrasekar, T. N. Farris, A new approach for studying mechanical properties of thin surface layers affected by manufacturing processes, J. Manuf. Sci. Eng. – Trans. ASME. 125 (2003) 310-315.

DOI: https://doi.org/10.1115/1.1559161

[24] T.A. Trunina, E.A. Kokovkhin, Formation of a finely dispersed structure in steel surface layers under combined processing using hydraulic pressing, J. Mach. Manuf. Rel. 37 (2008) 160-162.

DOI: https://doi.org/10.3103/s1052618808020118

[25] S. E. Aleksandrov, D. Z. Grabko, O. A. Shikimaka, The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes, J. Mach. Manuf. Rel. 38 (2009) 277-282.

DOI: https://doi.org/10.3103/s105261880903011x

[26] S. Alexandrov, The strain rate intensity factor and its applications: a review, Mater. Sci. Forum. 623 (2009) 1-20.

[27] S. Alexandrov, Y. -R. Jeng, Influence of pressure - dependence of the yield criterion on the strain-rate-intensity factor, J. Eng. Math. 71 (2011) 339-348.

DOI: https://doi.org/10.1007/s10665-011-9458-4

[28] R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, (1950).

[29] B. Avitzur, "Analysis of central bursting defects in drawing and extrusion, J. Eng. Ind. – Trans. ASME. 90 (1968) 79-91.

DOI: https://doi.org/10.1115/1.3604610