Modelling of Damage Evolution in the Vicinity of Frictional Interfaces in Metal Forming

Article Preview

Abstract:

Conventional ductile fracture criteria are not applicable in the vicinity of maximum friction surfaces for several rigid plastic material models because the equivalent strain rate (second invariant of the strain rate tensor) approaches infinity near such surfaces. In the present paper, a non-local ductile fracture criterion generalizing the modified Cockroft-Latham ductile fracture criterion is proposed to overcome this difficulty with the use of conventional local ductile fracture criteria. The final form of the new ductile fracture criterion involves the strain rate intensity factor which is the coefficient of the principal singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. When the velocity field is not singular, the new ductile fracture criterion reduces to the modified Cockroft-Latham criterion. The strain rate intensity factor cannot be found by means of commercial finite element packages since the corresponding velocity field is singular. In the present paper, the new fracture criterion is illustrated with the use of an approximate semi-analytical solution for plane strain drawing. It is shown that the prediction is in qualitative agreement with physical expectations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-133

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Atkins, Fracture in forming, J. Mater. Proc. Tech. 56 (1996) 609-618.

Google Scholar

[2] M. A. Shabara, A. A., El-Domiaty, M. A. Kandil, Validity assessment of ductile fracture criteria in cold forming, J. Mater. Eng. Perf. 5 (1996) 478-488.

DOI: 10.1007/bf02648845

Google Scholar

[3] H. Li, M.W. Fu, J. Lu, H. Yang, Ductile fracture: experiments and computations, Int. J. Plast. 27 (2011) 147-180.

Google Scholar

[4] M. D. Cockroft, D. J. Latham, Ductility and the workability of metals, J. Inst. Metals, 96 (1968) 33-39.

Google Scholar

[5] S. I. Oh, C. C. Chen, S. Kobayashi, Ductile fracture in axisymmetric extrusion and drawing. Part 2: Workability in extrusion and drawing, J. Eng. Ind. -Trans. ASME. 101 (1979) 36-44.

DOI: 10.1115/1.3439471

Google Scholar

[6] D. -C. Ko, B. -M. Kim, J. -C. Choi, Prediction of surface-fracture initiation in the axisymmetric simple upsetting of an aluminum alloy, J. Mater. Proc. Tech. 62 (1996) 166-174.

DOI: 10.1016/0924-0136(95)02200-7

Google Scholar

[7] R. Hambli, M. Reszka, Fracture criteria identification using inverse technique method and blanking experiment, Int. J. Mech. Sci. 44 (2002) 1349-1361.

DOI: 10.1016/s0020-7403(02)00049-8

Google Scholar

[8] N. Ogawa, M. Shiomi, K. Osakada, Forming of magnesium alloy at elevated temperatures for precision forming, Int. J. Mach. Tools Manuf. 42 (2002) 607-614.

DOI: 10.1016/s0890-6955(01)00149-3

Google Scholar

[9] W. T. Zheng, S. H. Zhang, D. Sorgente, L. Tricarico, G. Palumbo, Approach of using a ductile fracture criterion in deep drawing of magnesium alloy cylindrical cups under non-isothermal condition, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 221 (2007).

DOI: 10.1243/09544054jem756

Google Scholar

[10] S. Alexandrov, D. Vilotic, A theoretical experimental method for the identification of the modified Cockroft - Latham ductile fracture criterion, Proc. IMechE, Part C: J. Mech. Eng. Sci. 222 (2008) 1869-1872.

DOI: 10.1243/09544062jmes1055

Google Scholar

[11] R. B. Figueiredo, P. R. Cetlin, T.G. Langdon, The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing, Mater. Sci. Eng.: A. 518 (2009) 124-131.

DOI: 10.1016/j.msea.2009.04.007

Google Scholar

[12] A. Pesin, V. Salganik and D. Pustovoytov, Modeling of surface crack form change of continuously cast slabs in roughing rolling at wide strip mill2000, Steel Res. Int. 81 (2010) 82-85.

DOI: 10.1063/1.3457534

Google Scholar

[13] S. Alexandrov , O. Richmond, Singular plastic flow fields near surfaces of maximum friction stress, Int. J. Non-Linear Mech. 36 (2001) 1-11.

DOI: 10.1016/s0020-7462(99)00075-x

Google Scholar

[14] S. Alexandrov, E. Lyamina, Prediction of fracture in the vicinity of friction surfaces in metal forming processes, J. Appl. Mech. Tech. Physics. 47 (2006) 757-761.

DOI: 10.1007/s10808-006-0112-2

Google Scholar

[15] S. Alexandrov, E. Lyamina, Non-local criteria of fracture near of friction surfaces and its application to extrusion and drawing processes, J. Mach. Manuf. Rel. 36 (2007) 262-268.

DOI: 10.3103/s1052618807030090

Google Scholar

[16] S. Alexandrov, E. Lyamina, Singular solutions for plane plastic flow of pressure-dependent materials, Doklady Physics. 47 (2002) 308-311.

DOI: 10.1134/1.1477887

Google Scholar

[17] S. Alexandrov, D. Harris, Comparison of solution behaviour for three models of pressure-dependent plasticity: A simple analytical example, Int. J. Mech. Sci. 48 (2006) 750-762.

DOI: 10.1016/j.ijmecsci.2006.01.009

Google Scholar

[18] S. Alexandrov, G. Mishuris, Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces, J. Eng. Math. 65 (2009) 143-156.

DOI: 10.1007/s10665-009-9277-z

Google Scholar

[19] S. Alexandrov, Specific features of solving the problem of compression of an orthotropic plastic material between rotating plates, J. Appl. Mech. Tech. Physics. 50 (2009) 886-890.

DOI: 10.1007/s10808-009-0120-0

Google Scholar

[20] M. F. Kanninen, C. H. Popelar, Advanced Fracture Mechanics, University Press, (1985).

Google Scholar

[21] D. M. Norris, J. E. Reaugh, B. Moran, D. F. Quinones, A plastic-strain, mean-stress criterion for ductile fracture, J. Eng. Mater. Tech. – Trans. ASME. 100 (1978) 279-286.

DOI: 10.1115/1.3443491

Google Scholar

[22] T. Aukrust, S. LaZghab, Thin shear boundary layers in flow of aluminium, Int. J. Plast. 16 (2000) 59-71.

DOI: 10.1016/s0749-6419(99)00047-9

Google Scholar

[23] S. P. Moylan, S. Kompella, S. Chandrasekar, T. N. Farris, A new approach for studying mechanical properties of thin surface layers affected by manufacturing processes, J. Manuf. Sci. Eng. – Trans. ASME. 125 (2003) 310-315.

DOI: 10.1115/1.1559161

Google Scholar

[24] T.A. Trunina, E.A. Kokovkhin, Formation of a finely dispersed structure in steel surface layers under combined processing using hydraulic pressing, J. Mach. Manuf. Rel. 37 (2008) 160-162.

DOI: 10.3103/s1052618808020118

Google Scholar

[25] S. E. Aleksandrov, D. Z. Grabko, O. A. Shikimaka, The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes, J. Mach. Manuf. Rel. 38 (2009) 277-282.

DOI: 10.3103/s105261880903011x

Google Scholar

[26] S. Alexandrov, The strain rate intensity factor and its applications: a review, Mater. Sci. Forum. 623 (2009) 1-20.

Google Scholar

[27] S. Alexandrov, Y. -R. Jeng, Influence of pressure - dependence of the yield criterion on the strain-rate-intensity factor, J. Eng. Math. 71 (2011) 339-348.

DOI: 10.1007/s10665-011-9458-4

Google Scholar

[28] R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, (1950).

Google Scholar

[29] B. Avitzur, "Analysis of central bursting defects in drawing and extrusion, J. Eng. Ind. – Trans. ASME. 90 (1968) 79-91.

DOI: 10.1115/1.3604610

Google Scholar